СМИ о нас

06.04.23 06.04.2023 Российская академия наук. ФИАН на выставке «Фотоника-2023»

Физический институт им. П. Н. Лебедева Российской академии наук принял участие в 17-й Международной специализированной выставке лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики», проходившей в Москве.

Выставка объединила представителей предприятий и фирм – производителей лазерной и оптической продукции, научно-исследовательских институтов и ведущих учебных заведений России, Беларуси и Армении. Кроме того, в 2023 году участниками выставки стали около 30 профильных компаний из Китая. Информационным партнером мероприятия традиционно выступила редакция научно-технического журнала «Фотоника», главным редактором которого является руководитель Троицкого обособленного подразделения ФИАН, чл.-корр. РАН А. В. Наумов.

На стенде ФИАН были представлены научно-технологические разработки Института в области оптики, лазерных технологий, фотоники и сенсорики, действующие макеты экспериментальных стендов, образцы прецизионных оптических изделий, лазерных кристаллов и наноматериалов:

1. Компактный высококогерентный перестраиваемый диодный лазер с внешним резонатором для спектроскопии высокого разрешения (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Такие лазеры используются в прецизионной спектроскопии и квантовой оптике, в т. ч. для лазерного охлаждения атомов рубидия. Ультрахолодные атомные ансамбли являются мощнейшим инструментом многих современных экспериментов в области квантовых технологий и фундаментальных исследований.

2. Технология лазерной сварки и герметизации для изготовления миниатюрных стеклянных атомных кювет – ячеек. Выставочные образцы кювет для квантовых магнитометров и атомных стандартов частоты (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Атомные ячейки применяются в качестве чувствительных элементов в микроволновых стандартах частоты, магнитометрах с оптической накачкой, ЯМР гироскопах на изотопах Xe. Длина волны выставочного макета компактного диодного лазера также стабилизируется с помощью ячейки, заполненной парами атомов рубидия.

3. Технология синтеза монокристаллов А2В6, легированных переходными металлами, и образцы кристаллов для лазерной генерации в среднем инфракрасном диапазоне на длинах волн 2–7 мкм (Лаборатория лазеров с катодно-лучевой накачкой, Отдел лазерных технологий ТОП ФИАН). Была представлена экспозиция из выращенных кристаллов и активных лазерных элементов: ZnSe:Cr, CdSe:Cr, CdTe:Fe, CdSe:Fe, ZnSe:Fe. Лазеры на основе таких кристаллов имеют широкие перспективы использования для спектроскопии сложных молекул, экологического контроля атмосферы, медицины, лидаров и др.

4. Выставочный макет медицинского лазерного аппарата на парах меди для микрохирургических операций в области дерматологии, косметологии, гинекологии, онкологии и офтальмологии (Лаборатория полупроводниковых лазеров с электронной накачкой, Отдел лазерных технологий ТОП ФИАН). Аппарат является примером многолетнего опыта разработок и производства высокотехнологичного лазерного оборудования, а также клинического опыта использования лазерных технологий, и имеет регистрационное удостоверение Росздравнадзора. В настоящее время проводятся мероприятия по сертификации оборудования на предмет соответствия актуальным требованиям, предъявляемым к медицинским изделиям.

5. Методика экспресс-диагностики на основе SERS-спектроскопии и технология синтеза специализированных SERS-подложек для высокочувствительной спектроскопии и сенсорики (Лаборатория новых фотонных материалов, Отдел перспективной фотоники и сенсорики ТОП ФИАН). Были представлены различные типы SERS-активных подложек, в т. ч. с металлическими нанопроволоками и дендритными наноструктурами. Такие наноматериалы могут найти применение для изучения сложных органических молекул и клеточных структур, анализа спектров и детектирования малых количеств вещества (вплоть до единичных молекул), в т. ч. в газовой среде. Сотрудниками ФИАН был презентован экспериментальный стенд для экспресс-диагностики веществ методом SERS-спектроскопии, а также рабочая модель гибкого нагревателя на основе трехмерных сеток из металлических нанопроволок.

6. Технология изготовления и выставочные образцы прецизионных оптических компонент: зеркал, многослойных интерференционных фильтров, просветляющих покрытий (Технопарк «Прецизионные оптические технологии» ТОП ФИАН). Презентация оптического производства включала в себя технологии изготовления оптических деталей с шероховатостью ̴ 1 Å, зеркал с малыми потерями (коэффициент отражения ̴ 99,999 %), зеркал с высокой лучевой стойкостью, спектральных фильтров с полушириной ̴ 3Å и коэффициентом пропускания более 90 % и других типов оптических покрытий для широкого спектра оптических изделий: дихроичных зеркал, поляризаторов, чирпированных зеркал, просветляющей оптики, спектральных фильтров, светоделителей, металлических зеркал и др.

7. Высокостабильный метановый оптический стандарт частоты (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Непрерывный He-Ne/СН4 лазер (длина волны 3,39 мкм), стабилизированный по узкой спектральной линии метана, входящий в состав Фотонного СВЧ-генератора и задающий «опорную» оптическую частоту для синхронизации частоты повторения импульсов фемтосекундного волоконного лазера (длина волны 1,55 мкм). Благодаря использованию такого лазера стабильность компонент СВЧ-гребенки (1-10 ГГц) на выходе фотодетектора, регистрирующего фемтосекундные импульсы, приобретает стабильность частоты He-Ne/CH4 лазера. Предельная кратковременная стабильность оптической частоты опорного He-Ne/CH4 лазера определяется «естественными» частотными шумами излучения, которые находятся на уровне ≈ 0,1 Гц/√Гц (в относительных единицах ≈ 10-15 /√Гц). Это позволяет снизить на 1–2 порядка кратковременную нестабильность частоты и уровень фазовых шумов СВЧ-гармоник Фотонного СВЧ-генератора по сравнению с водородными мазерами, кварцевыми и оптоэлектронными генераторами. Применяемые отечественные технологии, разработанные в сотрудничестве с высокотехнологическими компаниями-арендаторами, многолетними партнерами ФИАН ООО «Авеста» и ООО «Флавт», обеспечивают устойчивую автономную работу лазера при сохранении параметров в течение не менее 5 лет.

Cотрудники ФИАН приняли участие в секции «Узлы и устройства фотоники для научного приборостроения» ХI Конгресса технологической платформы «Фотоника» с докладом «Трехмерная (3D) наноскопия на основе структурированных световых полей» (Д.В. Прокопова, Н.Н. Лосевский, С.А. Самагин, С.П. Котова, И.Ю. Еремчев, И.Т. Мынжасаров, А.В. Наумов), подготовленным по результатам работ, выполненных коллаборацией сотрудников ТОП ФИАН, Самарского филиала ФИАН, Института спектроскопии РАН и Московского педагогического государственного университета.

Также состоялось расширенное заседание Совета по оптике и фотонике Отделения физических наук РАН, посвященное обсуждению важнейших результатов научных институтов, находящихся под научно-методическим руководством ОФН РАН. Были заслушаны доклады представителей научных коллективов из разных городов России: Москвы (ФИАН, ИСАН, ФНИЦ ИОФ РАН, ФНИЦ «Кристаллография и фотоника РАН»), Санкт-Петербурга (ФТИ им. А.Ф. Иоффе РАН), Черноголовки (ИФТТ РАН), Нижнего Новгорода (ИПФ РАН), Томска (ИОА СО РАН), Новосибирска (ИЛФ СО РАН), Владивостока (ИАПУ ДВО РАН). Сотрудники ФИАН представили доклады: «Транспортируемые оптические часы на одиночном ионе иттербия (И.А. Семериков, И.В. Заливако, А.С. Борисенко, М.Д. Аксенов, Н.Н. Колачевский, К.Ю. Хабарова), «Жидкокристаллический ферриэлектрик как электрооптическая среда пространственно-временных фазовых модуляторов света (Е.П. Пожидаев, М.В. Минченко, А.В. Кузнецов, Т.П. Ткаченко, В.А. Барбашов) и «Трёхмерная флуоресцентная наноскопия с аппаратной модификацией функции рассеяния точки» (И.Ю. Еремчев, Д.В. Прокопова, Н.H. Лосевский, И.Т. Мынжасаров, С.П. Котова, А.В. Наумов). Участники семинара были награждены почетными дипломами Отделения физических наук РАН.

Участники и посетители выставки «Фотоника-2023» получили возможность ознакомиться с основными направлениями подготовки научных кадров в аспирантуре ФИАН.

По итогам презентации научных достижений и технологических разработок коллектив ФИАН был награжден дипломом 17-й Международной специализированной выставки лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики».

Источник: ФИАН.

https://new.ras.ru/activities/news/fizicheskiy-institut-imeni-p-n-lebedeva-ran-na-vystavke-fotonika-2023/

06.04.23 06.04.2023 Атомная Энергия 2.0. ФИАН представил передовые разработки на 17-й Международной выставке «Фотоника. Мир лазеров и оптики»

Физический институт им. П.Н. Лебедева Российской академии наук принял участие в 17-й Международной специализированной выставке лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики», проходившей в Москве. 

Выставка объединила представителей предприятий и фирм – производителей лазерной и оптической продукции, научно-исследовательских институтов и ведущих учебных заведений России, Беларуси и Армении. Кроме того, в 2023 году участниками выставки стали около 30 профильных компаний из Китая. Информационным партнером мероприятия традиционно выступила редакция научно-технического журнала «Фотоника», главным редактором которого является руководитель Троицкого обособленного подразделения ФИАН, чл.-корр. РАН А.В. Наумов.

На стенде ФИАН были представлены научно-технологические разработки Института в области оптики, лазерных технологий, фотоники и сенсорики, действующие макеты экспериментальных стендов, образцы прецизионных оптических изделий, лазерных кристаллов и наноматериалов:

1. Компактный высококогерентный перестраиваемый диодный лазер с внешним резонатором для спектроскопии высокого разрешения (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Такие лазеры используются в прецизионной спектроскопии и квантовой оптике, в т.ч. для лазерного охлаждения атомов рубидия. Ультрахолодные атомные ансамбли являются мощнейшим инструментом многих современных экспериментов в области квантовых технологий и фундаментальных исследований.

2. Технология лазерной сварки и герметизации для изготовления миниатюрных стеклянных атомных кювет - ячеек. Выставочные образцы кювет для квантовых магнитометров и атомных стандартов частоты (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Атомные ячейки применяются в качестве чувствительных элементов в микроволновых стандартах частоты, магнитометрах с оптической накачкой, ЯМР гироскопах на изотопах Xe. Длина волны выставочного макета компактного диодного лазера также стабилизируется с помощью ячейки, заполненной парами атомов рубидия.

3. Технология синтеза монокристаллов А2В6, легированных переходными металлами, и образцы кристаллов для лазерной генерации в среднем инфракрасном диапазоне на длинах волн 2–7 мкм (Лаборатория лазеров с катодно-лучевой накачкой, Отдел лазерных технологий ТОП ФИАН). Была представлена экспозиция из выращенных кристаллов и активных лазерных элементов: ZnSe:Cr, CdSe:Cr, CdTe:Fe, CdSe:Fe, ZnSe:Fe. Лазеры на основе таких кристаллов имеют широкие перспективы использования для спектроскопии сложных молекул, экологического контроля атмосферы, медицины, лидаров и др.

4. Выставочный макет медицинского лазерного аппарата на парах меди для микрохирургических операций в области дерматологии, косметологии, гинекологии, онкологии и офтальмологии (Лаборатория полупроводниковых лазеров с электронной накачкой, Отдел лазерных технологий ТОП ФИАН). Аппарат является примером многолетнего опыта разработок и производства высокотехнологичного лазерного оборудования, а также клинического опыта использования лазерных технологий, и имеет регистрационное удостоверение Росздравнадзора. В настоящее время проводятся мероприятия по сертификации оборудования на предмет соответствия актуальным требованиям, предъявляемым к медицинским изделиям.

5. Методика экспресс-диагностики на основе SERS-спектроскопии и технология синтеза специализированных SERS-подложек для высокочувствительной спектроскопии и сенсорики (Лаборатория новых фотонных материалов, Отдел перспективной фотоники и сенсорики ТОП ФИАН). Были представлены различные типы SERS-активных подложек, в т.ч. с металлическими нанопроволоками и дендритными наноструктурами. Такие наноматериалы могут найти применение для изучения сложных органических молекул и клеточных структур, анализа спектров и детектирования малых количеств вещества (вплоть до единичных молекул), в т.ч. в газовой среде. Сотрудниками ФИАН был презентован экспериментальный стенд для экспресс-диагностики веществ методом SERS-спектроскопии, а также рабочая модель гибкого нагревателя на основе трехмерных сеток из металлических нанопроволок.

6. Технология изготовления и выставочные образцы прецизионных оптических компонент: зеркал, многослойных интерференционных фильтров, просветляющих покрытий (Технопарк «Прецизионные оптические технологии» ТОП ФИАН). Презентация оптического производства включала в себя технологии изготовления оптических деталей с шероховатостью  ̴ 1 Å, зеркал с малыми потерями (коэффициент отражения  ̴ 99,999%), зеркал с высокой лучевой стойкостью, спектральных фильтров с полушириной   ̴ 3Å и коэффициентом пропускания более 90% и других типов оптических покрытий для широкого спектра оптических изделий: дихроичных зеркал, поляризаторов, чирпированных зеркал, просветляющей оптики, спектральных фильтров, светоделителей, металлических зеркал и др. 

7. Высокостабильный метановый оптический стандарт частоты (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Непрерывный He-Ne/СН4 лазер (длина волны 3,39 мкм), стабилизированный по узкой спектральной линии метана, входящий в состав Фотонного СВЧ-генератора и задающий «опорную» оптическую частоту для синхронизации частоты повторения импульсов фемтосекундного волоконного лазера (длина волны 1,55 мкм). Благодаря использованию такого лазера стабильность компонент СВЧ-гребенки (1-10 ГГц) на выходе фотодетектора, регистрирующего фемтосекундные импульсы, приобретает стабильность частоты He-Ne/CH4 лазера. Предельная кратковременная стабильность оптической частоты опорного He-Ne/CH4 лазера определяется «естественными» частотными шумами излучения, которые находятся на уровне ≈ 0,1 Гц/√Гц  (в относительных единицах ≈ 10^(-15) /√Гц). Это позволяет снизить на 1–2 порядка кратковременную нестабильность частоты и уровень фазовых шумов СВЧ-гармоник Фотонного СВЧ-генератора по сравнению с водородными мазерами, кварцевыми и оптоэлектронными генераторами. Применяемые отечественные технологии, разработанные в сотрудничестве с высокотехнологическими компаниями-арендаторами, многолетними партнерами ФИАН ООО «Авеста» и ООО «Флавт», обеспечивают устойчивую автономную работу лазера при сохранении параметров в течение не менее 5 лет.

Cотрудники ФИАН приняли участие в секции «Узлы и устройства фотоники для научного приборостроения» ХI Конгресса технологической платформы «Фотоника» с докладом «Трехмерная (3D) наноскопия на основе структурированных световых полей» (Д.В. Прокопова, Н.Н. Лосевский, С.А. Самагин, С.П. Котова, И.Ю. Еремчев, И.Т. Мынжасаров, А.В. Наумов), подготовленным по результатам работ, выполненных коллаборацией сотрудников ТОП ФИАН, Самарского филиала ФИАН, Института спектроскопии РАН и Московского педагогического государственного университета.

Также состоялось расширенное заседание Совета по оптике и фотонике Отделения физических наук РАН, посвященное обсуждению важнейших результатов научных институтов, находящихся под научно-методическим руководством ОФН РАН. Были заслушаны доклады представителей научных коллективов из разных городов России: Москвы (ФИАН, ИСАН, ФНИЦ ИОФ РАН, ФНИЦ «Кристаллография и фотоника РАН»), Санкт-Петербурга (ФТИ им. А.Ф. Иоффе РАН), Черноголовки (ИФТТ РАН), Нижнего Новгорода (ИПФ РАН), Томска (ИОА СО РАН), Новосибирска (ИЛФ СО РАН), Владивостока (ИАПУ ДВО РАН). Сотрудники ФИАН представили доклады: «Транспортируемые оптические часы на одиночном ионе иттербия (И.А. Семериков, И.В. Заливако, А.С. Борисенко, М.Д. Аксенов, Н.Н. Колачевский, К.Ю. Хабарова), «Жидкокристаллический ферриэлектрик как электрооптическая среда пространственно-временных фазовых модуляторов света (Е.П. Пожидаев, М.В. Минченко, А.В. Кузнецов, Т.П. Ткаченко, В.А. Барбашов) и «Трёхмерная флуоресцентная наноскопия с аппаратной модификацией функции рассеяния точки» (И.Ю. Еремчев, Д.В. Прокопова, Н.H. Лосевский, И.Т. Мынжасаров, С.П. Котова, А.В. Наумов). Участники семинара были награждены почетными дипломами Отделения физических наук РАН.

Участники и посетители выставки «Фотоника-2023» получили возможность ознакомиться с основными направлениями подготовки научных кадров в аспирантуре ФИАН. По итогам презентации научных достижений и технологических разработок коллектив ФИАН был награжден дипломом 17-й Международной специализированной выставки лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики».

Источник: ФИАН

https://www.atomic-energy.ru/news/2023/04/06/134099

06.04.23 06.04.2023 Научная Россия. ФИАН на выставке «Фотоника-2023»

Физический институт им. П.Н. Лебедева Российской академии наук принял участие в 17-й Международной специализированной выставке лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики», проходившей в Москве.

Выставка объединила представителей предприятий и фирм – производителей лазерной и оптической продукции, научно-исследовательских институтов и ведущих учебных заведений России, Беларуси и Армении. Кроме того, в 2023 году участниками выставки стали около 30 профильных компаний из Китая. Информационным партнером мероприятия традиционно выступила редакция научно-технического журнала «Фотоника», главным редактором которого является руководитель Троицкого обособленного подразделения ФИАН, чл.-корр. РАН А.В. Наумов.

На стенде ФИАН были представлены научно-технологические разработки института в области оптики, лазерных технологий, фотоники и сенсорики, действующие макеты экспериментальных стендов, образцы прецизионных оптических изделий, лазерных кристаллов и наноматериалов:

1. Компактный высококогерентный перестраиваемый диодный лазер с внешним резонатором для спектроскопии высокого разрешения (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Такие лазеры используются в прецизионной спектроскопии и квантовой оптике, в т.ч. для лазерного охлаждения атомов рубидия. Ультрахолодные атомные ансамбли являются мощнейшим инструментом многих современных экспериментов в области квантовых технологий и фундаментальных исследований.

2. Технология лазерной сварки и герметизации для изготовления миниатюрных стеклянных атомных кювет - ячеек. Выставочные образцы кювет для квантовых магнитометров и атомных стандартов частоты (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Атомные ячейки применяются в качестве чувствительных элементов в микроволновых стандартах частоты, магнитометрах с оптической накачкой, ЯМР гироскопах на изотопах Xe. Длина волны выставочного макета компактного диодного лазера также стабилизируется с помощью ячейки, заполненной парами атомов рубидия.

3. Технология синтеза монокристаллов А2В6, легированных переходными металлами, и образцы кристаллов для лазерной генерации в среднем инфракрасном диапазоне на длинах волн 2–7 мкм (Лаборатория лазеров с катодно-лучевой накачкой, Отдел лазерных технологий ТОП ФИАН). Была представлена экспозиция из выращенных кристаллов и активных лазерных элементов: ZnSe:Cr, CdSe:Cr, CdTe:Fe, CdSe:Fe, ZnSe:Fe. Лазеры на основе таких кристаллов имеют широкие перспективы использования для спектроскопии сложных молекул, экологического контроля атмосферы, медицины, лидаров и др.

4. Выставочный макет медицинского лазерного аппарата на парах меди для микрохирургических операций в области дерматологии, косметологии, гинекологии, онкологии и офтальмологии (Лаборатория полупроводниковых лазеров с электронной накачкой, Отдел лазерных технологий ТОП ФИАН). Аппарат является примером многолетнего опыта разработок и производства высокотехнологичного лазерного оборудования, а также клинического опыта использования лазерных технологий и имеет регистрационное удостоверение Росздравнадзора. В настоящее время проводятся мероприятия по сертификации оборудования на предмет соответствия актуальным требованиям, предъявляемым к медицинским изделиям.

5. Методика экспресс-диагностики на основе SERS-спектроскопии и технология синтеза специализированных SERS-подложек для высокочувствительной спектроскопии и сенсорики (Лаборатория новых фотонных материалов, Отдел перспективной фотоники и сенсорики ТОП ФИАН). Были представлены различные типы SERS-активных подложек, в т.ч. с металлическими нанопроволоками и дендритными наноструктурами. Такие наноматериалы могут найти применение для изучения сложных органических молекул и клеточных структур, анализа спектров и детектирования малых количеств вещества (вплоть до единичных молекул), в т.ч. в газовой среде. Сотрудниками ФИАН был презентован экспериментальный стенд для экспресс-диагностики веществ методом SERS-спектроскопии, а также рабочая модель гибкого нагревателя на основе трехмерных сеток из металлических нанопроволок.

6. Технология изготовления и выставочные образцы прецизионных оптических компонент: зеркал, многослойных интерференционных фильтров, просветляющих покрытий (Технопарк «Прецизионные оптические технологии» ТОП ФИАН). Презентация оптического производства включала в себя технологии изготовления оптических деталей с шероховатостью  ̴ 1 Å, зеркал с малыми потерями (коэффициент отражения  ̴ 99,999%), зеркал с высокой лучевой стойкостью, спектральных фильтров с полушириной   ̴ 3Å и коэффициентом пропускания более 90% и других типов оптических покрытий для широкого спектра оптических изделий: дихроичных зеркал, поляризаторов, чирпированных зеркал, просветляющей оптики, спектральных фильтров, светоделителей, металлических зеркал и др.

7. Высокостабильный метановый оптический стандарт частоты (Лаборатория стандартов частоты, Отдел лазерных технологий ТОП ФИАН). Непрерывный He-Ne/СН4 лазер (длина волны 3,39 мкм), стабилизированный по узкой спектральной линии метана, входящий в состав Фотонного СВЧ-генератора и задающий «опорную» оптическую частоту для синхронизации частоты повторения импульсов фемтосекундного волоконного лазера (длина волны 1,55 мкм). Благодаря использованию такого лазера стабильность компонент СВЧ-гребенки (1-10 ГГц) на выходе фотодетектора, регистрирующего фемтосекундные импульсы, приобретает стабильность частоты He-Ne/CH4 лазера. Предельная кратковременная стабильность оптической частоты опорного He-Ne/CH4 лазера определяется «естественными» частотными шумами излучения, которые находятся на уровне ≈ 0,1 Гц/√Гц (в относительных единицах ≈ 10^(-15) /√Гц). Это позволяет снизить на 1–2 порядка кратковременную нестабильность частоты и уровень фазовых шумов СВЧ-гармоник Фотонного СВЧ-генератора по сравнению с водородными мазерами, кварцевыми и оптоэлектронными генераторами. Применяемые отечественные технологии, разработанные в сотрудничестве с высокотехнологическими компаниями-арендаторами, многолетними партнерами ФИАН ООО «Авеста» и ООО «Флавт», обеспечивают устойчивую автономную работу лазера при сохранении параметров в течение не менее 5 лет.

Оптика. Источник фото: ФИАН

Cотрудники ФИАН приняли участие в секции «Узлы и устройства фотоники для научного приборостроения» ХI Конгресса технологической платформы «Фотоника» с докладом «Трехмерная (3D) наноскопия на основе структурированных световых полей» (Д.В. Прокопова, Н.Н. Лосевский, С.А. Самагин, С.П. Котова, И.Ю. Еремчев, И.Т. Мынжасаров, А.В. Наумов), подготовленным по результатам работ, выполненных коллаборацией сотрудников ТОП ФИАН, Самарского филиала ФИАН, Института спектроскопии РАН и Московского педагогического государственного университета.

Также состоялось расширенное заседание Совета по оптике и фотонике Отделения физических наук РАН, посвященное обсуждению важнейших результатов научных институтов, находящихся под научно-методическим руководством ОФН РАН. Были заслушаны доклады представителей научных коллективов из разных городов России: Москвы (ФИАН, ИСАН, ФНИЦ ИОФ РАН, ФНИЦ «Кристаллография и фотоника РАН»), Санкт-Петербурга (ФТИ им. А.Ф. Иоффе РАН), Черноголовки (ИФТТ РАН), Нижнего Новгорода (ИПФ РАН), Томска (ИОА СО РАН), Новосибирска (ИЛФ СО РАН), Владивостока (ИАПУ ДВО РАН). Сотрудники ФИАН представили доклады: «Транспортируемые оптические часы на одиночном ионе иттербия (И.А. Семериков, И.В. Заливако, А.С. Борисенко, М.Д. Аксенов, Н.Н. Колачевский, К.Ю. Хабарова), «Жидкокристаллический ферриэлектрик как электрооптическая среда пространственно-временных фазовых модуляторов света (Е.П. Пожидаев, М.В. Минченко, А.В. Кузнецов, Т.П. Ткаченко, В.А. Барбашов) и «Трёхмерная флуоресцентная наноскопия с аппаратной модификацией функции рассеяния точки» (И.Ю. Еремчев, Д.В. Прокопова, Н.H. Лосевский, И.Т. Мынжасаров, С.П. Котова, А.В. Наумов). Участники семинара были награждены почетными дипломами Отделения физических наук РАН.

Участники и посетители выставки «Фотоника-2023» получили возможность ознакомиться с основными направлениями подготовки научных кадров в аспирантуре ФИАН. По итогам презентации научных достижений и технологических разработок коллектив ФИАН был награжден дипломом 17-й Международной специализированной выставки лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики».

Информация и фото предоставлены отделом по связям с общественностью ФИАН

https://scientificrussia.ru/articles/fian-na-vystavke-fotonika-2023

06.04.23 06.04.2023 НСН. Ученые РФ объявили о создании квантового компьютера с облачным доступом

Учёные из России впервые в своей практике продемонстрировали возможность дистанционного доступа к пятикубитному квантовому компьютеру, архитектура которого построена на ионах. Об этом объявил руководитель фонда Национальной технологической инициативы Вадим Медведев. Информация появилась на сайте НТИ.

Проект по созданию ионного квантового компьютера с облачным доступом стартовал в 2020 году при поддержке Фонда НТИ и Минцифры. Авторы последнего по времени достижения – группа физиков из Российского квантового центра и ФИАН им. П. Н. Лебедева Российской академии наук.

Научные работники сумели активировать базовые квантовые алгоритмы и в режиме реального времени подключились к процессору с классического персонального компьютера.

Как пояснил глава Фонда, разработанный в рамках проекта программно-аппаратный комплекс уникален для России. Он представляет собой единственный процессор с работающим после настройки облачным интерфейсом, который имеет возможность оперировать кудитным регистром.

Квантовые компьютеры представляют собой совершенно новый класс вычислительных устройств. Применение квантовых эффектов позволяет решать задачи, которые на сегодня недоступны самым мощным обычным суперкомпьютерам.

Как отмечает Telegram-канал «Радиоточка НСН», компания Илона Маска Neuralink недавно объявила, что может уже через несколько месяцев впервые вживить человеку чип для управления телефоном и компьютером без помощи рук.

https://nsn.fm/nauka-i-tehnologii/uchenye-rf-obyavili-o-sozdanii-kvantovogo-komputera-s-oblachnym-dostupom

06.04.23 06.04.2023 Известия. Российские ученые впервые удаленно подключились к квантовому компьютеру

Российские ученые впервые показали возможность удаленного доступа к пятикубитному квантовому компьютеру на ионах. Как рассказал «Известиям» 6 апреля генеральный директор фонда НТИ Вадим Медведев, это единственный в России процессор с настроенным облачным интерфейсом, который способен оперировать кудитным регистром.

«Разработанный в рамках проекта ЛИЦ программно-аппаратный комплекс уникален для России — это единственный процессор с настроенным облачным интерфейсом, который способен оперировать кудитным регистром. Результат проекта представляет высокий научный потенциал для развития российской отрасли квантовых вычислений», — отметил Медведев.

Как сообщили в НТИ, команде физиков из Российского квантового центра и ФИАН им. П.Н. Лебедева РАН удалось запустить ключевые квантовые алгоритмы, в режиме реального времени подключившись к процессору с классического персонального компьютера.

Руководитель научной группы «Квантовые информационные технологии» Алексей Федоров, в свою очередь, отметил, что планируется масштабировать ионный квантовый процессор и в перспективе интегрировать программное обеспечение в облачную платформу, разрабатываемую в рамках дорожной карты по развитию квантовых вычислений.

«Это позволит значительно расширить ее функциональность за счет возможности работы с кудитными алгоритмами», — подчеркнул он.

Проект по созданию ионного квантового компьютера с облачным доступом был запущен в 2020 году при поддержке фонда НТИ и Минцифры. В 2021 году команда запатентовала архитектуру созданного квантового процессора, а на следующий год увеличила его мощность до 5 кубит. В конце марта 2023 года был продемонстрирован облачный интерфейс для взаимодействия с созданным процессором, выполнен запуск квантовых алгоритмов.

В октябре прошлого года директор лаборатории квантовых коммуникаций ИТМО Владимир Егоров заявил, что исследования современных ученых оказали большое влияние на перспективы квантовых вычислений, в том числе благодаря им сейчас на стадии прорыва находятся квантовые компьютеры.

По его словам, квантовая запутанность, как и другие квантовые свойства, сильно отличаются от свойств других объектов материального мира. В частности, благодаря ей можно создавать новые вычислительные и коммуникационные устройства.

https://iz.ru/1494635/2023-04-06/rossiiskie-uchenye-vpervye-udaleno-podkliuchilis-k-kvantovomu-kompiuteru

06.04.23 06.04.2023 Сделано в России. Российские учёные впервые удалённо подключились к квантовому компьютеру

Впервые российским исследователям удалось удалённо подключиться с обычного компьютера к отечественному ионному квантовому компьютеру и запустить ключевые квантовые алгоритмы. Об этом пишет ТАСС со ссылкой на сообщение пресс-службы Российского квантового центра.

«Команда физиков из Российского квантового центра и ФИАН им. П. Н. Лебедева РАН продемонстрировала возможность удаленного подключения к отечественному ионному квантовому компьютеру», - говорится в сообщении.

«Сегодня команда работает над тестированием нового класса - вариационных квантовых алгоритмов, которые представляют большой интерес для прототипирования прикладных задач из области химии, оптимизации и машинного обучения», - добавили в пресс-службе.

https://madeinrussia.ru/ru/news/21048

06.04.23 06.04.2023 15-News. Физики из РФ впервые смогли дистанционно подключиться к квантовому компьютеру

Физики из ФИАН им. Лебедева выяснили, как можно удаленно проводить квантовые вычисления и запускать новые алгоритмы.

Физики впервые смогли подключиться к российскому квантовому компьютеру.

"Во время эксперимента физики запустили алгоритмы Гровера и Бернштейна-Вазирани на процессоре", — сообщили исследователи.

Такие вычисления используются для поиска значений в базе данных и n-битного числа. Точность операций выросла до 80-90 процентов.

Исследователи продолжают заниматься масштабированием квантового процессора.

http://15-news.ru/04/fiziki-iz-rf-vpervye-smogli-distancionno-podklyuchitsya-k-kvantovomu-kompyuteru/

06.04.23 06.04.2023 FBM. Российским физикам удалось дистанционно подключиться к квантовому компьютеру

Впервые российские учёные продемонстрировали возможность удалённого доступа к пятикубитному квантовому компьютеру на ионах. Об этом проинформировал фонд НТИ, передаёт «Газета.Ru».

В сообщении отмечено, что пробный запуск квантового компьютера был проведён специалистами из Российского квантового центра и ФИАН им. П. Н. Лебедева РАН.

«У экспертов получилось запустить главные квантовые алгоритмы, в режиме настоящего времени подключившись к процессору с обыкновенного ПК», — поведал представитель Фонда НТИ Вадим Медведев.

Следует напомнить, что проект по разработке ионного квантового компьютера с облачным доступом был запущен три года назад при поддержке Фонда НТИ и Минцифры. В 2021 году учёные запатентовали архитектуру сделанного квантового процессора, а в 2022 году увеличили его мощность до пяти кубит.

https://fbm.ru/novosti/science/rossijskim-fizikam-udalos-distancionno-podkljuchitsja-k-kvantovomu-kompjuteru.html

06.04.23 06.04.2023 Нескучные технологии. Российские ученые создали квантовый компьютер с доступом через «облако»

Созданный в России ионный компьютер стал для отечественного научного сообщества важным подспорьем при решении фундаментальных задач в различных областях, требующих проведения сложных вычислений. Сейчас ученые получили удаленный, так называемый «облачный» доступ к его ресурсам. Честь первыми опробовать дистанционный способ подключения к нему выпала команде физиков из ФИАН им. П. Н. Лебедева РАН и Российского квантового центра.

Исследователи запустили несколько ключевых квантовых алгоритмов в режиме онлайн, подключившись к процессору с обычного ПК. Для этого был использован программно-аппаратный комплекс (ПАК), разработанный в ходе специального проекта Лидирующего исследовательского центра (ЛИЦ) «Квантовые вычисления». Этот комплекс оборудования и софта уникален в масштабах России и является единственным, где реализован облачный интерфейс доступа к квантовой вычислительной машине.

Квантовые компьютеры – это совершенно новый класс высокопроизводительной вычислительной техники. Они предназначены для самых сложных вычислений, требующих колоссальных ресурсов. Квантовые машины способны решать задачи, являющиеся слишком сложными для традиционных суперкомпьютеров. Они незаменимы в таких прикладных областях, как создание новых лекарств, материалов, обработка массивов данных, решение сложных логических задач. Проект создания облачного доступа к ресурсам квантового компьютера стартовал в России в 2020 году по инициативе Минцифры и Фонда НТИ.

Он активно развивался и в 2021 году был представлен первый его прототип на четырех кубитах. Команда разработчиков получила патент на архитектуру квантового процессора. В 2022 году ученые увеличили мощность машины до 5 кубитов. Все это время специалисты Сколтеха и ФТИАН им. К. А. Валиева РАН работали над комплексом ПО для ионного квантового вычислителя. Весной 2023 года проект успешно финишировал, но ученые готовы и далее развивать его.

https://itcrumbs.ru/rossijskie-uchenye-sozdali-kvantovyj-kompyuter-s-dostupom-cherez-oblako_83826

05.04.23 05.04.2023 ЭкаПравда. ТАСС: впервые российские физики смогли удаленно подключить квантовый компьютер

 

Российские физики из Квантового центра и Физического института им. П.Н. Лебедева РАН разработали новый способ удаленного запуска квантовых алгоритмов — или сложных наборов правил — без прямого доступа для их выполнения.

Этого удалось добиться впервые, соединив обычный ПК с российским квантовым компьютером в режиме реального времени. Об этом сообщает ТАСС.

Алгоритмы этого типа используются для поиска нужного значения в заданной базе данных и решения задач, связанных с определением n-битного числа. В результате были отмечены операции, выполненные с точностью 80-90 процентов.

На сегодняшний день ученые продолжают работать над тем, чтобы сделать квантовый процессор больше, чем он есть сейчас. Планируется, что это произойдет путем интеграции его программного обеспечения в облачную вычислительную платформу.

https://www.ecopravda.ru/nauka/tass-vpervye-rossijskie-fiziki-smogli-udalenno-podklyuchit-kvantovyj-kompyuter/

Подкатегории