СМИ о нас
10.11.22 | 09.11.2022 Атомная Энергия 2.0. Эксперты спрогнозировали возможные сроки создания российских квантовых компьютеров |
Дорожные карты по квантовым вычислениям, квантовым коммуникациям и квантовым сенсорам разработаны в России. Ответственными за их создание стали Росатом, РЖД и Ростех. В Дискуссионном клубе журналистов эксперты обсуждали, когда мы получим отечественный квантовый компьютер «в железе».
«Дорожная карта помогает консолидировать результаты различных научных групп и превращать их в конечные продукты», – отметил Алексей Федоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра, основатель проекта по квантовым вычислениям QBoard.
Этот научно-технологический центр выступает основным исполнителем по направлению «Квантовые вычисления» и привлекает к участию множество университетов, НИИ, научных центров по всей стране. Квантовый компьютер будет за секунды решать определенного рода задачи, на которые у суперкомпьютера ушли бы годы.
Еще одно направление - квантовые коммуникации - обеспечат защищенную передачу данных. А квантовая сенсорика позволит сделать измерения точнее.
Стоит отметить, что квантовые технологии уже используются, их тестируют крупные предприятия России.
При использовании квантового компьютера важно помнить и о защите передаваемых данных. К примеру, беспилотные автомобили должны обмениваться информацией между собой, с другими устройствами, с городской инфраструктурой. И чтобы избежать катастроф, эта связь должна быть гарантированно защищена от злоумышленников, даже если они будут использовать для взлома квантовый компьютер.
Сами квантовые компьютеры разрабатываются в лабораториях мира, в том числе в отечественных — на сверхпроводниках, нейтральных атомах, ионах и фотонах.
Лидерами в развитии квантовых вычислений считаются американцы, но сейчас картина несколько изменилась, ведь и Россия сильна своей научной школой, отмечает эксперт Алексей Федоров. Наши разработки позволяют не идти по следам американских компаний-гигантов, а делать принципиально новые элементы квантового компьютера. Например, создавать новые типы кубитов – кудиты. С их использованием работает четырехкубитный квантовый компьютер, созданный Российским квантовым центром и ФИАН им. П.Н. Лебедева.
Количество кубитов (наименьших единиц информации) в отечественных квантовых компьютерах пока – единицы или десятки. Но эксперт считает показателем успеха не столько количественное наращивание кубитов, сколько готовность компаний использовать квантовые технологии для решения своих задач:
«Думаю, на горизонте 2025-27 года мы это увидим. А первые квантовые алгоритмы для решения прототипов прикладных задач увидим даже раньше».
06.11.22 | 06.11.2022 Аргументы и факты. Эксперты рассказали, когда мы увидим отечественные квантовые компьютеры |
Санкт-Петербург, 6 ноября - АиФ-Петербург.
Дорожные карты по квантовым вычислениям, квантовым коммуникациям и квантовым сенсорам разработаны в России. Ответственными за их создание стали Росатом, РЖД и Ростех. В Дискуссионном клубе журналистов эксперты обсуждали, когда мы получим отечественный квантовый компьютер «в железе».
«Дорожная карта помогает консолидировать результаты различных научных групп и превращать их в конечные продукты», – отметил Алексей Федоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра, основатель проекта по квантовым вычислениям QBoard. Этот научно-технологический центр выступает основным исполнителем по направлению «Квантовые вычисления» и привлекает к участию множество университетов, НИИ, научных центров по всей стране. Квантовый компьютер будет за секунды решать определенного рода задачи, на которые у суперкомпьютера ушли бы годы.
Еще одно направление - квантовые коммуникации - обеспечат защищенную передачу данных. А квантовая сенсорика позволит сделать измерения точнее.
Стоит отметить, что квантовые технологии уже используются, их тестируют крупные предприятия России.
При использовании квантового компьютера важно помнить и о защите передаваемых данных. К примеру, беспилотные автомобили должны обмениваться информацией между собой, с другими устройствами, с городской инфраструктурой. И чтобы избежать катастроф, эта связь должна быть гарантированно защищена от злоумышленников, даже если они будут использовать для взлома квантовый компьютер.
Сами квантовые компьютеры разрабатываются в лабораториях мира, в том числе в отечественных — на сверхпроводниках, нейтральных атомах, ионах и фотонах.
Лидерами в развитии квантовых вычислений считаются американцы, но сейчас картина несколько изменилась, ведь и Россия сильна своей научной школой, отмечает эксперт Алексей Федоров. Наши разработки позволяют не идти по следам американских компаний-гигантов, а делать принципиально новые элементы квантового компьютера. Например, создавать новые типы кубитов – кудиты. С их использованием работает четырехкубитный квантовый компьютер, созданный Российским квантовым центром и ФИАН им. П.Н. Лебедева.
Количество кубитов (наименьших единиц информации) в отечественных квантовых компьютерах пока – единицы или десятки. Но эксперт считает показателем успеха не столько количественное наращивание кубитов, сколько готовность компаний использовать квантовые технологии для решения своих задач:
«Думаю, на горизонте 2025-27 года мы это увидим. А первые квантовые алгоритмы для решения прототипов прикладных задач увидим даже раньше».
https://spb.aif.ru/society/kvantovye_kompyutery_zashchityat_ot_zloumyshlennikov
08.11.22 | 08.11.2022 Атомная Энергия 2.0. ФИАН принял участие в организации и проведении 26-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» в Казани |
Сотрудники ТОП ФИАН приняли участие в организации и проведении 26-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2022) с 1 по 3 ноября в Академии наук Республики Татарстан в г. Казань.
Вдохновителем создания казанской молодежной научной школы-конференции по оптике и спектроскопии и ее бессменным проректором, начиная с 1997 и по 2020 год, был Виталий Владимирович Самарцев (1939-2021) - доктор физико-математических наук, профессор, заведующий лабораторией нелинейной оптики Казанского физико-технического института им. Е.К. Завойского ФИЦ “Казанский научный центр Российской академии наук”, заслуженный деятель науки Республики Татарстан и Российской Федерации. Организаторами школы стали Казанский (Приволжский) федеральный университет и Академия наук Республики Татарстан. Сопредседателями программного комитета КООС-2022 выступили: д.ф.-м.н., профессор, президент АН РТ Мякзюм Халимуллович Салахов и член-корреспондент РАН, руководитель ТОП ФИАН Андрей Витальевич Наумов, выступивший на открытии Школы со вступительным словом о роли оптических и лазерных технологий в современной жизни и их связи с фундаментальными научными трудами академика Н.Г. Басова.
Слушателями Школы традиционно стали студенты, аспиранты и молодые учёные из различных городов России. В качестве приглашенных лекторов с 40-минутными лекциями по актуальным вопросам и современному состоянию исследований в области нелинейной и когерентной оптики, оптической спектроскопии перспективных материалов, когерентной лазерной спектроскопии, квантовой оптики, нанофотоники и зондовой микроскопии выступили известные российские учёные: д.ф.-м.н., профессор Овчинников О.В. (Воронежский государственный университет) «Коллоидные квантовые точки: взаимосвязь люминесценции с системой структурных дефектов», д.ф.-м.н., профессор Гайнутдинов Р.Х. (Казанский федеральный университет) «Проблемы квантовой физики и квантовых технологий», д.ф.-м.н., профессор Харинцев С.С. (Казанский федеральный университет) «Дизайн субволновых температурных профилей с помощью настраиваемых термоплазмонов», д.ф.-м.н. Маймистов А.И. (Национальный исследовательский университет МИФИ) «Нелинейные оптические свойства сред, имеющих топологические свойства. Феноменологический подход», к.ф.-м.н., с.н.с. Башаров А.М. (НИЦ «Курчатовский институт») «Оптика открытых квантовых осцилляторных систем в представлении алгебраической теории возмущений», к.ф.-м.н., с.н.с. Болдырев К.Н. (Институт спектроскопии РАН) «Спектроскопия высокого разрешения алмазных материалов с центрами окраски, к.ф.-м.н., доцент Гладуш Ю.Г. (Сколковский институт науки и технологий) «Фотоника углеродных наноструктур», д.ф.-м.н., профессор Сазонов С.В. (НИЦ «Курчатовский институт») «Оптико-акустические аналогии в исследованиях когерентных и нелинейных процессов», к.ф.-м.н., с.н.с. Гладуш М.Г. (Институт спектроскопии РАН, ТОП ФИАН, МПГУ) «Квантово-кинетическая теория фотолюминесценции», к.ф.-м.н., доцент Ковалюк В.В. (Московский институт электроники и математики им. А.Н. Тихонова, МПГУ, НИУ ВШЭ) «Интегральная фотоника».
2 ноября состоялось выездное научное заседание ячейки Young Minds Европейского физического общества, объединяющей студентов, аспирантов и молодых ученых МПГУ, ИСАН, ФИАН, ВШЭ и Сколтеха. Приглашенным докладчиком выступил профессор Фонда Александра фон Гумбольдта, доктор физ.-мат. наук, заведующий лабораториями в ФИЦ «Кристаллография и фотоника» РАН и Сеченовском университете, приглашенный профессор Ганноверского университета (Германия) с лекцией на тему «Медицинская фотоника». Состоялось обсуждение возможных направлений сотрудничества научных групп из Казани (Казанский федеральный университет, Академия наук Республики Татарстан, ФИЦ «Казанский научный центр РАН», Казанский национальный исследовательский технический университет КНИТУ – КАИ), Воронежа (Воронежский государственный университет) и Москвы (Физический институт им. П.Н. Лебедева РАН (ТОП ФИАН), Московский педагогический государственный университет, ФИЦ «Кристаллография и фотоника РАН», ФИЦ «Институт общей физики им. А.М. Прохорова РАН», Сколковский институт науки и технологий, НИУ «Высшая школа экономики»).
Молодыми участниками школы было представлено 35 устных и 34 стендовых доклада, среди которых проходил конкурс на лучший доклад. Дипломами Школы и памятными подарками были отмечены 8 участников, в т.ч. вк.м.н.с. лаборатории квантовых излучателей отдела перспективной фотоники и сенсорики ТОП ФИАН Александр Тарасевич, выступивший с докладом на тему «Особенности статистики фотонов люминесценции одиночных субмикронных кристаллов перовскитов MAPbI3», выполненным совместно с сотрудниками Института спектроскопии РАН, МПГУ и Университета Лунда.
Проведение следующей 27-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2023) запланировано на октябрь-ноябрь 2023 года в г. Казань.
06.11.22 | 06.11.2022 Протвино Сегодня. Научно-популярный лекторий прошел на территории протвинского предприятия АО «Протом» |
Традиционно лекторий проводится в антуражных локациях научно-исследовательских институтов и наукоёмких производств в наукоградах Московской области.
Основная идея проекта – полностью погрузить слушателей в научную атмосферу, доступно и интересно на территории наукоемких производств или НИИ рассказать о науке. Это дает возможность увидеть ее изнутри, напрямую пообщаться с учеными, сотрудниками производств, узнать новую актуальную информацию об отечественных разработках, вовлечь талантливую молодежь в сферу науки, повысить доступность информации о достижениях и перспективах российской науки. Одним из форматов проекта Science Talks стал Lab-стрим — прямые трансляции из лабораторий или производств, в рамках которых учёные показывают свои лаборатории, проводят небольшие эксперименты в прямом эфире.
Молодые ученые, которых приглашают в качестве спикеров на офлайн Sciencе talks, готовят небольшие, но яркие, понятные, интересные выступления, отвечают на вопросы слушателей.
Антон ПОПОВ, организатор, кандидат биологических наук, заведующий лабораторией Института экспериментальной теоретической биофизики РАН:
— Сегодня лекторий проходит при поддержке Министерства информационных и социальных коммуникаций Московской области, которое помогло нам организовать масштабное мероприятие с использованием высоких технологий. Темп развития Sciencе talks растет, и с каждым разом мы выходим на новый уровень. Мы улучшили организацию, делаем анонсы, проговариваем со спикерами формат подачи, чтобы он был простым, но в то же время интересным, увлекательным. Наши лекторы разговаривают на языке, который понятен и неспециалистам - школьникам старших классов общеобразовательных школ, жителям и гостям наукоградов Московской области, интересующимся наукой, студентам, молодым ученым.
В этом году лекторий состоялся в Протвино уже второй раз и начался с экскурсии по АО «Протом». Медицинские физики, научные сотрудники ФТЦ «ФИАН» Александр Шемяков и Михаил Белихин показали уникальные пятиметровые протонные медицинские синхротроны «Прометеус», не имеющие аналогов в мире и предназначенные для лечения раковых опухолей. Передовые технологии, разработанные нашими учеными, позволяют поражать злокачественные опухоли, не нанося вреда здоровым органам.
Кирилл Болдырев, старший научный сотрудник, заведующий лабораторией Института спектроскопии РАН, представитель наукограда Троицка показал эксперименты с жидким азотом ураном и другими веществами, обладающими удивительными свойствами.
Кирилл БОЛДЫРЕВ:
— Я хочу показать, что наука – это красиво. Искренне считаю, что красота спасет мир, и ученые занимаются точно таким же творчеством, как художники или музыканты. Всё это одно и то же, красота — это то, что нас зажигает. Я хочу продемонстрировать, как вижу эту красоту, заинтересовать людей, которые, возможно, не знают про эту область. Мое выступление, скорее, развлекательное, потому что мы занимаемся квантовыми технологиями, и не хотелось бы наскучить слушателям с тем, что им непонятно.
Выступление старшего научного сотрудника Института биохимии и физиологии микроорганизмов из наукограда Пущино Андрея Шадрина было посвящено самым передовым технологиям борьбы с антибиотико-резистентной микрофлорой. Бактериофаги — вирусы, которые живут много миллионов лет и могут избирательно поглощать бактерии. Эти вирусы сегодня используются в качестве лекарства для уничтожения бактерий, которые невозможно убить антибиотиками.
Полина Глазкова, кандидат медицинских наук, старший научный сотрудник ГБУЗ МО МОНИКИ им. М.Ф. Владимирского в Москве рассказала об эффекте плацебо: как работает то, что не должно.
В качестве ведущего и модератора в этом году пригласили корреспондента телеканала 360 Дмитрия Степанищева.
Дмитрий СТЕПАНИЩЕВ, модератор Sciencе talks:
— Этот формат уже выдержал семь серий, и у него большое будущее, потому что сегодня люди с каждым днем всё больше и больше вовлекаются в науку, стараясь разнообразить свою жизнь. Несмотря на доступ к интернету, у нас никогда нет доступа к конкретным людям. А здесь - прямой контакт с кандидатами, с докторами наук, с молодежью. Когда выступают люди лет 30, понимающие аудиторию, тренды, общающиеся в одной возрастной группе, то может появиться искра реального, живого диалога, который позволит почувствовать: наука очень важна и интересна. Перед нами реальная молодежь, которая делает крутые открытия, прорывается вперед, берет человечество и отправляет покорять космос.
08.11.22 | 08.11.2022 Российская академия наук. Школа по оптике в Казани |
Сотрудники Троицкого обособленного подразделения (ТОП) ФИАН приняли участие в организации и проведении 26-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2022) с 1 по 3 ноября в Академии наук Республики Татарстан в г. Казань.
Вдохновителем создания казанской молодежной научной школы-конференции по оптике и спектроскопии и ее бессменным проректором, начиная с 1997 и по 2020 год, был Виталий Владимирович Самарцев (1939-2021) - доктор физико-математических наук, профессор, заведующий лабораторией нелинейной оптики Казанского физико-технического института им. Е.К. Завойского ФИЦ “Казанский научный центр Российской академии наук”, заслуженный деятель науки Республики Татарстан и Российской Федерации. Организаторами школы стали Казанский (Приволжский) федеральный университет и Академия наук Республики Татарстан. Сопредседателями программного комитета КООС-2022 выступили: д.ф.-м.н., профессор, президент АН РТ Мякзюм Халимуллович Салахов и член-корреспондент РАН, руководитель Троицкого обособленного подразделения ФИАН Андрей Витальевич Наумов, выступивший на открытии Школы со вступительным словом о роли оптических и лазерных технологий в современной жизни и их связи с фундаментальными научными трудами академика Н.Г. Басова.
Слушателями Школы традиционно стали студенты, аспиранты и молодые учёные из различных городов России. В качестве приглашенных лекторов с 40-минутными лекциями по актуальным вопросам и современному состоянию исследований в области нелинейной и когерентной оптики, оптической спектроскопии перспективных материалов, когерентной лазерной спектроскопии, квантовой оптики, нанофотоники и зондовой микроскопии выступили известные российские учёные: д.ф.-м.н., профессор Овчинников О.В. (Воронежский государственный университет) «Коллоидные квантовые точки: взаимосвязь люминесценции с системой структурных дефектов», д.ф.-м.н., профессор Гайнутдинов Р.Х. (Казанский федеральный университет) «Проблемы квантовой физики и квантовых технологий», д.ф.-м.н., профессор Харинцев С.С. (Казанский федеральный университет) «Дизайн субволновых температурных профилей с помощью настраиваемых термоплазмонов», д.ф.-м.н. Маймистов А.И. (Национальный исследовательский университет МИФИ) «Нелинейные оптические свойства сред, имеющих топологические свойства. Феноменологический подход», к.ф.-м.н., с.н.с. Башаров А.М. (НИЦ «Курчатовский институт») «Оптика открытых квантовых осцилляторных систем в представлении алгебраической теории возмущений», к.ф.-м.н., с.н.с. Болдырев К.Н. (Институт спектроскопии РАН) «Спектроскопия высокого разрешения алмазных материалов с центрами окраски, к.ф.-м.н., доцент Гладуш Ю.Г. (Сколковский институт науки и технологий) «Фотоника углеродных наноструктур», д.ф.-м.н., профессор Сазонов С.В. (НИЦ «Курчатовский институт») «Оптико-акустические аналогии в исследованиях когерентных и нелинейных процессов», к.ф.-м.н., с.н.с. Гладуш М.Г. (Институт спектроскопии РАН, ТОП ФИАН, МПГУ) «Квантово-кинетическая теория фотолюминесценции», к.ф.-м.н., доцент Ковалюк В.В. (Московский институт электроники и математики им. А.Н. Тихонова, МПГУ, НИУ ВШЭ) «Интегральная фотоника».
2 ноября состоялось выездное научное заседание ячейки Young Minds Европейского физического общества, объединяющей студентов, аспирантов и молодых ученых МПГУ, ИСАН, ФИАН, ВШЭ и Сколтеха. Приглашенным докладчиком выступил профессор Фонда Александра фон Гумбольдта, доктор физ.-мат. наук, заведующий лабораториями в ФИЦ «Кристаллография и фотоника» РАН и Сеченовском университете, приглашенный профессор Ганноверского университета (Германия) Хайдуков Евгений Валерьевич с лекцией на тему «Медицинская фотоника». Состоялось обсуждение возможных направлений сотрудничества научных групп из Казани (Казанский федеральный университет, Академия наук Республики Татарстан, ФИЦ «Казанский научный центр РАН», Казанский национальный исследовательский технический университет КНИТУ – КАИ), Воронежа (Воронежский государственный университет) и Москвы (Физический институт им. П.Н. Лебедева РАН (ТОП ФИАН), Московский педагогический государственный университет, ФИЦ «Кристаллография и фотоника РАН», ФИЦ «Институт общей физики им. А.М. Прохорова РАН», Сколковский институт науки и технологий, НИУ «Высшая школа экономики»).
Молодыми участниками школы было представлено 35 устных и 34 стендовых доклада, среди которых проходил конкурс на лучший доклад. Дипломами Школы и памятными подарками были отмечены 8 участников, в т.ч. вк.м.н.с. лаборатории квантовых излучателей отдела перспективной фотоники и сенсорики ТОП ФИАН Александр Тарасевич, выступивший с докладом на тему «Особенности статистики фотонов люминесценции одиночных субмикронных кристаллов перовскитов MAPbI3», выполненным совместно с сотрудниками Института спектроскопии РАН, МПГУ и Университета Лунда.
Проведение следующей 27-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2023) запланировано на октябрь-ноябрь 2023 года в г. Казань.
https://new.ras.ru/activities/news/shkola-po-optike-v-kazani/
07.11.22 | 07.11.2022 Научная Россия. Школа по оптике в Казани |
Сотрудники ТОП ФИАН приняли участие в организации и проведении 26-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2022) с 1 по 3 ноября в Академии наук Республики Татарстан в г. Казань.
Вдохновителем создания казанской молодежной научной школы-конференции по оптике и спектроскопии и ее бессменным проректором начиная с 1997 и по 2020 год был Виталий Владимирович Самарцев (1939-2021) - доктор физико-математических наук, профессор, заведующий лабораторией нелинейной оптики Казанского физико-технического института им. Е.К. Завойского ФИЦ “Казанский научный центр Российской академии наук”, заслуженный деятель науки Республики Татарстан и Российской Федерации. Организаторами школы стали Казанский (Приволжский) федеральный университет и Академия наук Республики Татарстан. Сопредседателями программного комитета КООС-2022 выступили: д.ф.-м.н., профессор, президент АН РТ Мякзюм Халимуллович Салахов и член-корреспондент РАН, руководитель ТОП ФИАН Андрей Витальевич Наумов, выступивший на открытии Школы со вступительным словом о роли оптических и лазерных технологий в современной жизни и их связи с фундаментальными научными трудами академика Н.Г. Басова.
Слушателями Школы традиционно стали студенты, аспиранты и молодые учёные из различных городов России. В качестве приглашенных лекторов с 40-минутными лекциями по актуальным вопросам и современному состоянию исследований в области нелинейной и когерентной оптики, оптической спектроскопии перспективных материалов, когерентной лазерной спектроскопии, квантовой оптики, нанофотоники и зондовой микроскопии выступили известные российские учёные: д.ф.-м.н., профессор Овчинников О.В. (Воронежский государственный университет) «Коллоидные квантовые точки: взаимосвязь люминесценции с системой структурных дефектов», д.ф.-м.н., профессор Гайнутдинов Р.Х. (Казанский федеральный университет) «Проблемы квантовой физики и квантовых технологий», д.ф.-м.н., профессор Харинцев С.С. (Казанский федеральный университет) «Дизайн субволновых температурных профилей с помощью настраиваемых термоплазмонов», д.ф.-м.н. Маймистов А.И. (Национальный исследовательский университет МИФИ) «Нелинейные оптические свойства сред, имеющих топологические свойства. Феноменологический подход», к.ф.-м.н., с.н.с. Башаров А.М. (НИЦ «Курчатовский институт») «Оптика открытых квантовых осцилляторных систем в представлении алгебраической теории возмущений», к.ф.-м.н., с.н.с. Болдырев К.Н. (Институт спектроскопии РАН) «Спектроскопия высокого разрешения алмазных материалов с центрами окраски, к.ф.-м.н., доцент Гладуш Ю.Г. (Сколковский институт науки и технологий) «Фотоника углеродных наноструктур», д.ф.-м.н., профессор Сазонов С.В. (НИЦ «Курчатовский институт») «Оптико-акустические аналогии в исследованиях когерентных и нелинейных процессов», к.ф.-м.н., с.н.с. Гладуш М.Г. (Институт спектроскопии РАН, ТОП ФИАН, МПГУ) «Квантово-кинетическая теория фотолюминесценции», к.ф.-м.н., доцент Ковалюк В.В. (Московский институт электроники и математики им. А.Н. Тихонова, МПГУ, НИУ ВШЭ) «Интегральная фотоника».
2 ноября состоялось выездное научное заседание ячейки Young Minds Европейского физического общества, объединяющей студентов, аспирантов и молодых ученых МПГУ, ИСАН, ФИАН, ВШЭ и Сколтеха. Приглашенным докладчиком выступил профессор Фонда Александра фон Гумбольдта, доктор физ.-мат. наук, заведующий лабораториями в ФИЦ «Кристаллография и фотоника» РАН и Сеченовском университете, приглашенный профессор Ганноверского университета (Германия) Хайдуков Евгений Валерьевич с лекцией на тему «Медицинская фотоника». Состоялось обсуждение возможных направлений сотрудничества научных групп из Казани (Казанский федеральный университет, Академия наук Республики Татарстан, ФИЦ «Казанский научный центр РАН», Казанский национальный исследовательский технический университет КНИТУ – КАИ), Воронежа (Воронежский государственный университет) и Москвы (Физический институт им. П.Н. Лебедева РАН (ТОП ФИАН), Московский педагогический государственный университет, ФИЦ «Кристаллография и фотоника РАН», ФИЦ «Институт общей физики им. А.М. Прохорова РАН», Сколковский институт науки и технологий, НИУ «Высшая школа экономики»).
Молодыми участниками школы было представлено 35 устных и 34 стендовых доклада, среди которых проходил конкурс на лучший доклад. Дипломами Школы и памятными подарками были отмечены 8 участников, в т.ч. вк.м.н.с. лаборатории квантовых излучателей отдела перспективной фотоники и сенсорики ТОП ФИАН Александр Тарасевич, выступивший с докладом на тему «Особенности статистики фотонов люминесценции одиночных субмикронных кристаллов перовскитов MAPbI3», выполненным совместно с сотрудниками Института спектроскопии РАН, МПГУ и Университета Лунда.
Проведение следующей 27-й молодежной научной школы «Когерентная оптика и оптическая спектроскопия» (КООС-2023) запланировано на октябрь-ноябрь 2023 года в г. Казань.
Информация и фото предоставлены отделом по связям с общественностью ФИАН
https://scientificrussia.ru/articles/skola-po-optike-v-kazani
27.12.22 | 27.12.2022 Российская газета. Эксперты назвали важнейшие научные достижения 2022 года |
Коллайдер NICA позволит заглянуть на 14 миллиардов лет назад, в первые секунды рождения нашего мира. / Артем Геодакян/ТАСС
Ученые, следуя современной моде, составляют научные "хит-парады" уходящего года. Своих лидеров называют как авторитетные журналы, в частности Science и Nature, так и многие другие издания, в том числе сетевые. В предпочтениях экспертов произошли серьезные изменения. Если два года подряд безоговорочным чемпионом были матричные РНК-вакцины от COVID-19, то в этом явного лидера нет. Но тренд очевиден. Первые места завоевала большая, очень сложная и дорогая научная техника.
Вселенная "Джеймса Уэбба"
Одним из самых ярких прорывов года признан долгожданный вывод в космос телескопа "Джеймс Уэбб". На сегодняшний день он самый мощный и дорогой в истории, обошелся почти в 10 миллиардов долларов. Рядом с ним даже "великий" телескоп "Хаббл" в лучшем случае "жигули" по сравнению с "мерседесом". Возможности нового телескопа настолько фантастичны, что многие из будущих открытий "Уэбба" мы не можем на сегодняшний день даже вообразить.
Уже первое сделанное "Уэббом" фото стало сенсацией. Оно показало раннюю Вселенную с самым высоким разрешением из когда-либо сделанных снимков. Изображение выделило участок неба размером примерно с песчинку, которую человек на Земле держит на расстоянии вытянутой руки, но на снимке видны тысячи галактик - такими, какими они были 4,6 млрд лет назад. Астрономы не ожидали увидеть в ранней Вселенной такое количество уже сформировавшихся правильных дисков галактик. За полгода работы "Уэбб" уже нашел самую далекую галактику, сделал несколько эпических фото, раскрыл тайну образования туманности Южное кольцо, рассказал о формировании галактик, нашел в далеких галактиках органические молекулы и др. Еще одна ключевая задача "Уэбба" - поиск экзопланет и их описание. Возможности аппарата позволяют лучше провести спектральный анализ, найти следы жизни, а значит, может быть, ответить на вопрос, который давно мучил человечество: одни ли мы во Вселенной?
Прорыв в термоядерном синтезе
В конце года произошло по-настоящему знаменательное событие, которого наука ожидала около 70 лет. Дело в том, что в ведущих лабораториях мира делались попытки осуществить термоядерный синтез, получив энергии больше, чем расходовалось на проведение этой реакции. На эти эксперименты потрачены многие миллиарды долларов, построены циклопические установки, но энергетически выгодный термояд не давался в руки. А бороться есть за что. Ведь термоядерный синтез мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. В земных условиях термоядерный синтез создают в основном двумя путями: с помощью установок токамак и с помощью лазеров, направляя много лучей на капсулу с изотопа водорода. Недавний прорыв был совершен как раз вторым способом на самой большой в мире лазерной установке размером почти с футбольное поле. Американские ученые в Ливерморской лаборатории стреляли из 192 лазеров по грануле с водородным топливом, вызвав термоядерную реакцию. В ходе эксперимента было передано 2,05 мегаджоуля энергии, что привело к получению 3,15 мегаджоулей. Такое превышение полученной энергии над затраченной получено впервые в мире. Этот эксперимент имеет огромное значение, потому что ученые продемонстрировали, что подобное в принципе реально. Конечно, для коммерческого использования понадобится немало лет, но путь проложен. Дальше, что называется, дело техники.
Геном человека расшифрован
За 30 лет исследований полностью расшифрован геном человека. Фото: Natali_Misм / istock
Ученые впервые полностью расшифровали геном человека. Это поставило точку в исследованиях, которые длились более 30 лет, - старт проекта "Геном человека" начался в 1990 году. Большую часть генома человека расшифровали в 2001 году. Но восемь процентов человеческого генома так и оставалось в "серой" зоне. Загадкой оставалась часть ДНК, которая не кодирует белок, но отвечает за различные аспекты работы клеток. В этом году биологи из США, России, Великобритании и ряда других стран завершили расшифровку. Это фундаментальное достижение доступно для открытого использования всем членам мирового научного сообщества и может быть использовано в медико-генетических лабораториях для поиска мутаций, связанных с различными заболеваниями. Полная версия генома дает возможность более точно выявлять индивидуальные генетические особенности. Теперь новый, окончательно расшифрованный геном станет новым стандартом в генетике.
В рейтинги попали еще несколько громких достижений. Например, впервые человеку пересадили сердце генно-модифицированной свиньи. Таким образом, продемонстрировано, что генетически модифицированное сердце животного может функционировать как человеческое без немедленного отторжения организмом. Это еще один шаг к спасению жизней людей по всему миру.
Впервые в истории перелили человеку искусственную кровь. Эта созданная британскими специалистами технология сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови. Эритроциты вырастили из образцов крови людей из базы доноров Национальной службы здравоохранения Великобритании. Вначале из биоматериала выделили стволовые клетки, а затем уже дифференцировали их. Ученые отмечают, что с высокой вероятностью выращенные в лаборатории эритроциты будут жить дольше, чем те, которые поступают от доноров. В таком случае пациентам, которым нужны регулярные длительные переливания крови, их потребуется меньше.
Впервые в истории человеку перелили искусственную кровь, что сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови
Инженеры Массачусетского технологического института изобрели уникальный полимер на основе меламина, который легче пластика и прочнее стали. Полимер очень легкий, при этом, чтобы его пробить, требуется в шесть раз больше усилий, чем пуленепробиваемое стекло. Разрушить его оказалось в два раза сложнее, чем сталь. Материал также непроницаем для газов и жидкостей. Из него можно создавать не просто обычные предметы, но даже строить дома.
Вклад России
О достижениях отечественной науки "РГ" рассказали руководители ведущих институтов и отделений РАН.
Григорий Трубников, директор Объединенного института ядерных исследований, академик:
- В этом году во Флеровской лаборатории академиком Юрием Оганесяном открыты и изучены свойства сразу четырех новых изотопов сверхтяжелых элементов - московия, хассия, сиборгия и дармштадтия. В принципе каждый новый изотоп - это открытие в мировой науке. Важно подчеркнуть, что это не просто расширение наших знаний в ядерной физике. Новые изотопы могут найти применение в самых разных сферах, например в медицине, радиохимии и т.д.
Второй результат связан с проектом мегасайенс - комплекс NICA. Напомню, что он рассчитан на получение максимально плотной ядерной материи, которая была в первые мгновения Большого взрыва. С помощью коллайдера мы надеемся заглянуть на 14 миллиардов лет назад, в первые секунды рождения нашего мира.
Пуск первого каскада этого ускорителя состоялся два года назад при участии премьер-министра Михаила Мишустина. А сейчас вступил в действие второй каскад, что позволило начать основную программу по исследованию сверхплотной ядерной материи. Наш эксперимент - конкурент тем работам, которые уже много лет ведутся в американской Брукхейвенской лаборатории и немецкой в Дармштадте. Темп набора данных и их объем у нас выше, чем у коллег, в коллаборации участвуют ученые из 11 стран.
Третий яркий результат - новые данные об экзотических сигналах из космоса на Байкальском нейтринном телескопе. За короткий срок он обнаружил 11 событий, связанных с нейтрино сверхвысоких энергий - около 100 ТэВ. Важно подчеркнуть, что фактически каждая такая зарегистрированная частица - это серьезное событие в астрофизике. Дело в том, что нейтрино очень слабо взаимодействует с материей, которая для частицы фактически прозрачна. Скажем, почти десять лет в Антарктиде нейтрино ловит американский телескоп IceCube. За эти годы улов, прямо скажем, небогатый, около 100 нейтрино. Именно эта "некоммуникабельность" частицы позволяет науке приблизиться к первым моментам зарождения Вселенной, дает ключ к разгадке ее тайн.
Нам не только удалось зарегистрировать этот десяток сигналов, но и определить сектор неба - направление, откуда они прилетели. Это активный центр нашей галактики Млечный Путь.
Николай Колачевский, директор Физического института РАН, член-корреспондент РАН:
- Одно из самых перспективных сегодня направлений связано с квантовыми вычислениями. На них правительством выделено 100 миллиардов рублей. Так вот, в прошлом году мы первыми в стране создали квантовый вычислитель на 4 кубита (кубит - наименьшая единица информации в квантовых устройствах). Это уже достаточно для создания среднемасштабных квантовых устройств без коррекции ошибок. А до конца этого года, что называется под елочку, надеемся достичь 16-кубитного рубежа. Это серьезный шаг к созданию квантового компьютера.
Второй результат хотя и получен несколько лет назад, но особо заинтересует миллионы россиян. Речь о создании российского МРТ. Он был разработан в нашем институте, построен опытный образец, продемонстрирован медикам и промышленникам. Все признали, что наш аппарат ни в чем не уступает импортным, но тогда на этом все закончилось. В фаворе остался импорт, наша разработка осталась в проектах.
И вот сейчас санкции вынудили к ней вернуться, стало ясно, что стране нужны собственные томографы. Уже принято решение, что серийный выпуск будет налажен под эгидой "Росатома", а наш институт будет активно участвовать в этой работе. Словом, вплотную займемся инновациями. Сегодня это важнейший вопрос и для науки, и нашей экономики.
Александр Лутовинов, замдиректора Института космических исследований РАН:
- Сегодня самые важные работы российской науки в области космоса связаны с уникальными исследованиями, которые ведет обсерватория "Спектр-РГ". Они стартовали в середине 2019 года. За это время уже удалось построить самую полную карту Вселенной в рентгеновском диапазоне.
Сейчас с помощью российского телескопа ART-XC им. М.Н. Павлинского, установленного на борту обсерватории, мы создаем подробную карту нашей галактики Млечный Путь. На небе она выглядит в виде узкой полоски звезд. Мы ее медленно сканируем с экспозицией, которая на порядок глубже, чем это делали при обзоре всего неба. Почему? Дело в том, что галактика "забита" пылью и газом, что не позволяет разглядеть многие детали, особенно на дальних окраинах. Поэтому, чтобы провести перепись "населения" галактики, приходится кардинально менять методы исследования. Эта работа началась в марте этого года и завершится в марте будущего. Уже удалось разглядеть сотни новых объектов, в том числе таких экзотических, как "черные дыры", "белые карлики", нейтронные звезды.
Как известно, после введения санкций установленный на аппарате немецкий телескоп eROSITA приостановил работу, но мы сумели достаточно быстро предложить новую программу наблюдений и научных задач, с которыми наш АRT-XC вполне успешно справляется. В частности, ряд задач решается в рамках совместных работ с коллегами из США, Южной Африки и ряда других стран.
Михаил Кирпичников, академик-секретарь Отделения биологических наук РАН:
- В Институте молекулярной биологии им. В.А. Энгельгардта изучен один из принципиальных механизмов развития болезни Альцгеймера. Для этого ученые вначале смоделировали эту болезнь на трансгенных нематодах (один из видов червей). А затем на этих моделях показали, как в мозге образуются так называемые белковые агрегаты, которые и вызывают болезнь. По итогам этого исследования предложен новый фармакологический агент - тетрапептид HAEE, который проходит гематоэнцефалический барьер и блокирует патологический процесс. На его основе можно создавать новые препараты для предотвращения болезни.
В МГУ проведены уникальные исследования микронасекомых. В чем суть работы? Миниатюризация - распространенный тренд не только в эволюции животных, но и в развитии технологий. У насекомых она привела к появлению видов, размеры которых составляют десятые доли миллиметра, что сопоставимо с размерами одноклеточных организмов, например амебы. Но в то же время микронасекомые - это многоклеточные животные, которые демонстрируют сложные формы поведения и передвижения, например "плавания" в воздухе. Их нервная система может служить удобной моделью для изучения когнитивных процессов. В недалеком будущем знания о передвижении микронасекомых могут помочь в создании микродронов. Полученные впервые в мире фундаментальные и прикладные результаты были опубликованы в 2022 г. в журналах группы Nature.
Впервые в мире на основе структурно модифицированных вирусов растений учеными МГУ созданы прототипы вакцин против сибирской язвы, COVID-19, ротавирусной инфекции, а учеными Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН разработан прототип мРНК-вакцины.
Владимир Стародубов, академик- секретарь Отделения медицинских наук РАН:
- В Санкт-Петебургском Институте экспериментальной медицины создана бивалентная вакцина от COVID-19 и гриппа. Она сконструирована на основе живого реплицирующегося вируса гриппа, в геном которого генно-инженерными методами внесены иммуногенные фрагменты коронавируса.
В России создана бивалентная вакцина от COVID-19 и гриппа. Фото: Аркадий Колыбалов
До регистрации клинические испытания были проведены на 120 тыс. детей в возрасте от трех лет, взрослых и пожилых людях. Всего в РФ произведено более 100 млн доз.
Назальное применение вакцины стимулирует локальный иммунитет в верхних дыхательных путях, что препятствует дальнейшему размножению вирусов и их распространению в окружающую среду. Такая бивалентная вакцина обеспечит комбинированную защиту населения от сезонных вирусов гриппа, а также от возможных вариантов коронавируса.
Этого события мир ждал более 70 лет. Впервые в ходе термоядерной реакции получено энергии больше, чем затрачено, что открывает человечеству путь к практически неисчерпаемым ее источникам
В НМИЦ детской травматологии и ортопедии им. Г.И. Турнера созданы транспедикулярные (?) системы 3,5 мм для коррекции врожденной деформации позвоночника на фоне нарушения формирования, слияния и сегментации позвонков в грудном и поясничном отделах, а также при тяжелых нестабильных переломах тел позвонков у детей раннего возраста. Крайне важно, что ученым в сотрудничестве с уральским заводом "Медин-Урал" удалось организовать импортозамещающее производство наборов инструментов и имплантатов для детской спинальной хирургии у детей от одного года до трех-четырех лет.
Николай Макаров, академик-секретарь Отделения историко-филологических наук РАН:
- В этом году 38 экспедиций вели работы от Калининграда до Чукотки, от Крыма и Дагестана до Новгорода и Вологды. Раскопки проходили также в Абхазии, Узбекистане, Казахстане и на Шпицбергене (Норвегия). Панорама находок, сделанных в разных точках страны, от западных до восточных границ, показывает цельность России и многообразие ее культуры со сложной историей.
Ученые раскопали несколько десятков уникальных артефактов - в частности, фрагменты фресок XII века в Новгороде, фортификационные объекты Великой Бактрийской стены, вскрыли новые культурные слои в древнем крымском городе Фанагория. А настоящей находкой года стала печать князя Владимира Мономаха. Она обнаружена в древнем прусском поселении "Привольное-1" под Калининградом.
Этот памятник археологии XI-XIII веков относится к "позднеязыческому" времени - периоду между эпохой викингов и началом крестоносной экспансии в Пруссию Тевтонского ордена. Она указывает на важнейшее значение этого древнего поселения для контактов пруссов и жителей древней Руси.
В некрополе под Суздалью ученые обнаружили множество артефактов: древние монеты, топоры, подвески. Фото: Институт археологии РАН
Неожиданный сюрприз преподнесли раскопки села Чаадаево под городом Муромом. Он всегда воспринимался как языческий дальний угол, захолустье, но мы здесь открыли прекрасную древнерусскую культуру. Найдено много элитных вещей, которые принадлежали местной знати. А самое главное, что впервые удалось полностью выявить планировку русского села XI-XII веков. Всегда считалось, что она была примитивной. Но в Чаадаеве она оказалась сложной, что необычно для сельской жизни того времени.
27.12.22 | 27.12.2022 Донецкий тормозок. Эксперты назвали важнейшие научные достижения 2022 года |
Ученые, следуя современной моде, составляют научные «хит-парады» уходящего года. Своих лидеров называют как авторитетные журналы, в частности Science и Nature, так и многие другие издания, в том числе сетевые. В предпочтениях экспертов произошли серьезные изменения. Если два года подряд безоговорочным чемпионом были матричные РНК-вакцины от COVID-19, то в этом явного лидера нет. Но тренд очевиден. Первые места завоевала большая, очень сложная и дорогая научная техника.
Вселенная «Джеймса Уэбба»
Одним из самых ярких прорывов года признан долгожданный вывод в космос телескопа «Джеймс Уэбб». На сегодняшний день он самый мощный и дорогой в истории, обошелся почти в 10 миллиардов долларов. Рядом с ним даже «великий» телескоп «Хаббл» в лучшем случае «жигули» по сравнению с «мерседесом». Возможности нового телескопа настолько фантастичны, что многие из будущих открытий «Уэбба» мы не можем на сегодняшний день даже вообразить.
Уже первое сделанное «Уэббом» фото стало сенсацией. Оно показало раннюю Вселенную с самым высоким разрешением из когда-либо сделанных снимков. Изображение выделило участок неба размером примерно с песчинку, которую человек на Земле держит на расстоянии вытянутой руки, но на снимке видны тысячи галактик — такими, какими они были 4,6 млрд лет назад. Астрономы не ожидали увидеть в ранней Вселенной такое количество уже сформировавшихся правильных дисков галактик. За полгода работы «Уэбб» уже нашел самую далекую галактику, сделал несколько эпических фото, раскрыл тайну образования туманности Южное кольцо, рассказал о формировании галактик, нашел в далеких галактиках органические молекулы и др. Еще одна ключевая задача «Уэбба» — поиск экзопланет и их описание. Возможности аппарата позволяют лучше провести спектральный анализ, найти следы жизни, а значит, может быть, ответить на вопрос, который давно мучил человечество: одни ли мы во Вселенной?
Прорыв в термоядерном синтезе
В конце года произошло по-настоящему знаменательное событие, которого наука ожидала около 70 лет. Дело в том, что в ведущих лабораториях мира делались попытки осуществить термоядерный синтез, получив энергии больше, чем расходовалось на проведение этой реакции. На эти эксперименты потрачены многие миллиарды долларов, построены циклопические установки, но энергетически выгодный термояд не давался в руки. А бороться есть за что. Ведь термоядерный синтез мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. В земных условиях термоядерный синтез создают в основном двумя путями: с помощью установок токамак и с помощью лазеров, направляя много лучей на капсулу с изотопа водорода. Недавний прорыв был совершен как раз вторым способом на самой большой в мире лазерной установке размером почти с футбольное поле. Американские ученые в Ливерморской лаборатории стреляли из 192 лазеров по грануле с водородным топливом, вызвав термоядерную реакцию. В ходе эксперимента было передано 2,05 мегаджоуля энергии, что привело к получению 3,15 мегаджоулей. Такое превышение полученной энергии над затраченной получено впервые в мире. Этот эксперимент имеет огромное значение, потому что ученые продемонстрировали, что подобное в принципе реально. Конечно, для коммерческого использования понадобится немало лет, но путь проложен. Дальше, что называется, дело техники.
Геном человека расшифрован
Ученые впервые полностью расшифровали геном человека. Это поставило точку в исследованиях, которые длились более 30 лет, — старт проекта «Геном человека» начался в 1990 году. Большую часть генома человека расшифровали в 2001 году. Но восемь процентов человеческого генома так и оставалось в «серой» зоне. Загадкой оставалась часть ДНК, которая не кодирует белок, но отвечает за различные аспекты работы клеток. В этом году биологи из США, России, Великобритании и ряда других стран завершили расшифровку. Это фундаментальное достижение доступно для открытого использования всем членам мирового научного сообщества и может быть использовано в медико-генетических лабораториях для поиска мутаций, связанных с различными заболеваниями. Полная версия генома дает возможность более точно выявлять индивидуальные генетические особенности. Теперь новый, окончательно расшифрованный геном станет новым стандартом в генетике.
За 30 лет исследований полностью расшифрован геном человека. Фото: iStock
В рейтинги попали еще несколько громких достижений. Например, впервые человеку пересадили сердце генно-модифицированной свиньи. Таким образом, продемонстрировано, что генетически модифицированное сердце животного может функционировать как человеческое без немедленного отторжения организмом. Это еще один шаг к спасению жизней людей по всему миру.
Впервые в истории перелили человеку искусственную кровь. Эта созданная британскими специалистами технология сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови. Эритроциты вырастили из образцов крови людей из базы доноров Национальной службы здравоохранения Великобритании. Вначале из биоматериала выделили стволовые клетки, а затем уже дифференцировали их. Ученые отмечают, что с высокой вероятностью выращенные в лаборатории эритроциты будут жить дольше, чем те, которые поступают от доноров. В таком случае пациентам, которым нужны регулярные длительные переливания крови, их потребуется меньше.
Впервые в истории человеку перелили искусственную кровь, что сулит революцию в лечении людей с заболеваниями и редкими группами крови, а также в случае нехватки донорской крови
Инженеры Массачусетского технологического института изобрели уникальный полимер на основе меламина, который легче пластика и прочнее стали. Полимер очень легкий, при этом, чтобы его пробить, требуется в шесть раз больше усилий, чем пуленепробиваемое стекло. Разрушить его оказалось в два раза сложнее, чем сталь. Материал также непроницаем для газов и жидкостей. Из него можно создавать не просто обычные предметы, но даже строить дома.
Вклад России
О достижениях отечественной науки «РГ» рассказали руководители ведущих институтов и отделений РАН.
Григорий Трубников, директор Объединенного института ядерных исследований, академик:
— В этом году во Флеровской лаборатории академиком Юрием Оганесяном открыты и изучены свойства сразу четырех новых изотопов сверхтяжелых элементов — московия, хассия, сиборгия и дармштадтия. В принципе каждый новый изотоп — это открытие в мировой науке. Важно подчеркнуть, что это не просто расширение наших знаний в ядерной физике. Новые изотопы могут найти применение в самых разных сферах, например в медицине, радиохимии и т.д.
Второй результат связан с проектом мегасайенс — комплекс NICA. Напомню, что он рассчитан на получение максимально плотной ядерной материи, которая была в первые мгновения Большого взрыва. С помощью коллайдера мы надеемся заглянуть на 14 миллиардов лет назад, в первые секунды рождения нашего мира.
Пуск первого каскада этого ускорителя состоялся два года назад при участии премьер-министра Михаила Мишустина. А сейчас вступил в действие второй каскад, что позволило начать основную программу по исследованию сверхплотной ядерной материи. Наш эксперимент — конкурент тем работам, которые уже много лет ведутся в американской Брукхейвенской лаборатории и немецкой в Дармштадте. Темп набора данных и их объем у нас выше, чем у коллег, в коллаборации участвуют ученые из 11 стран.
Третий яркий результат — новые данные об экзотических сигналах из космоса на Байкальском нейтринном телескопе. За короткий срок он обнаружил 11 событий, связанных с нейтрино сверхвысоких энергий — около 100 ТэВ. Важно подчеркнуть, что фактически каждая такая зарегистрированная частица — это серьезное событие в астрофизике. Дело в том, что нейтрино очень слабо взаимодействует с материей, которая для частицы фактически прозрачна. Скажем, почти десять лет в Антарктиде нейтрино ловит американский телескоп IceCube. За эти годы улов, прямо скажем, небогатый, около 100 нейтрино. Именно эта «некоммуникабельность» частицы позволяет науке приблизиться к первым моментам зарождения Вселенной, дает ключ к разгадке ее тайн.
Нам не только удалось зарегистрировать этот десяток сигналов, но и определить сектор неба — направление, откуда они прилетели. Это активный центр нашей галактики Млечный Путь.
Николай Колачевский, директор Физического института РАН, член-корреспондент РАН:
— Одно из самых перспективных сегодня направлений связано с квантовыми вычислениями. На них правительством выделено 100 миллиардов рублей. Так вот, в прошлом году мы первыми в стране создали квантовый вычислитель на 4 кубита (кубит — наименьшая единица информации в квантовых устройствах). Это уже достаточно для создания среднемасштабных квантовых устройств без коррекции ошибок. А до конца этого года, что называется под елочку, надеемся достичь 16-кубитного рубежа. Это серьезный шаг к созданию квантового компьютера.
Второй результат хотя и получен несколько лет назад, но особо заинтересует миллионы россиян. Речь о создании российского МРТ. Он был разработан в нашем институте, построен опытный образец, продемонстрирован медикам и промышленникам. Все признали, что наш аппарат ни в чем не уступает импортным, но тогда на этом все закончилось. В фаворе остался импорт, наша разработка осталась в проектах.
И вот сейчас санкции вынудили к ней вернуться, стало ясно, что стране нужны собственные томографы. Уже принято решение, что серийный выпуск будет налажен под эгидой «Росатома», а наш институт будет активно участвовать в этой работе. Словом, вплотную займемся инновациями. Сегодня это важнейший вопрос и для науки, и нашей экономики.
Александр Лутовинов, замдиректора Института космических исследований РАН:
— Сегодня самые важные работы российской науки в области космоса связаны с уникальными исследованиями, которые ведет обсерватория «Спектр-РГ». Они стартовали в середине 2019 года. За это время уже удалось построить самую полную карту Вселенной в рентгеновском диапазоне.
Сейчас с помощью российского телескопа ART-XC им. М.Н. Павлинского, установленного на борту обсерватории, мы создаем подробную карту нашей галактики Млечный Путь. На небе она выглядит в виде узкой полоски звезд. Мы ее медленно сканируем с экспозицией, которая на порядок глубже, чем это делали при обзоре всего неба. Почему? Дело в том, что галактика «забита» пылью и газом, что не позволяет разглядеть многие детали, особенно на дальних окраинах. Поэтому, чтобы провести перепись «населения» галактики, приходится кардинально менять методы исследования. Эта работа началась в марте этого года и завершится в марте будущего. Уже удалось разглядеть сотни новых объектов, в том числе таких экзотических, как «черные дыры», «белые карлики», нейтронные звезды.
Фото: РГ/Антон Переплетчиков/Наталья Ячменникова
Как известно, после введения санкций установленный на аппарате немецкий телескоп eROSITA приостановил работу, но мы сумели достаточно быстро предложить новую программу наблюдений и научных задач, с которыми наш АRT-XC вполне успешно справляется. В частности, ряд задач решается в рамках совместных работ с коллегами из США, Южной Африки и ряда других стран.
Михаил Кирпичников, академик-секретарь Отделения биологических наук РАН:
— В Институте молекулярной биологии им. В.А. Энгельгардта изучен один из принципиальных механизмов развития болезни Альцгеймера. Для этого ученые вначале смоделировали эту болезнь на трансгенных нематодах (один из видов червей). А затем на этих моделях показали, как в мозге образуются так называемые белковые агрегаты, которые и вызывают болезнь. По итогам этого исследования предложен новый фармакологический агент — тетрапептид HAEE, который проходит гематоэнцефалический барьер и блокирует патологический процесс. На его основе можно создавать новые препараты для предотвращения болезни.
В МГУ проведены уникальные исследования микронасекомых. В чем суть работы? Миниатюризация — распространенный тренд не только в эволюции животных, но и в развитии технологий. У насекомых она привела к появлению видов, размеры которых составляют десятые доли миллиметра, что сопоставимо с размерами одноклеточных организмов, например амебы. Но в то же время микронасекомые — это многоклеточные животные, которые демонстрируют сложные формы поведения и передвижения, например «плавания» в воздухе. Их нервная система может служить удобной моделью для изучения когнитивных процессов. В недалеком будущем знания о передвижении микронасекомых могут помочь в создании микродронов. Полученные впервые в мире фундаментальные и прикладные результаты были опубликованы в 2022 г. в журналах группы Nature.
Впервые в мире на основе структурно модифицированных вирусов растений учеными МГУ созданы прототипы вакцин против сибирской язвы, COVID-19, ротавирусной инфекции, а учеными Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН разработан прототип мРНК-вакцины.
Владимир Стародубов, академик- секретарь Отделения медицинских наук РАН:
— В Санкт-Петебургском Институте экспериментальной медицины создана бивалентная вакцина от COVID-19 и гриппа. Она сконструирована на основе живого реплицирующегося вируса гриппа, в геном которого генно-инженерными методами внесены иммуногенные фрагменты коронавируса.
До регистрации клинические испытания были проведены на 120 тыс. детей в возрасте от трех лет, взрослых и пожилых людях. Всего в РФ произведено более 100 млн доз.
В России создана бивалентная вакцина от COVID-19 и гриппа. Фото: Александр Корольков/РГ
Назальное применение вакцины стимулирует локальный иммунитет в верхних дыхательных путях, что препятствует дальнейшему размножению вирусов и их распространению в окружающую среду. Такая бивалентная вакцина обеспечит комбинированную защиту населения от сезонных вирусов гриппа, а также от возможных вариантов коронавируса.
Этого события мир ждал более 70 лет. Впервые в ходе термоядерной реакции получено энергии больше, чем затрачено, что открывает человечеству путь к практически неисчерпаемым ее источникам
В НМИЦ детской травматологии и ортопедии им. Г.И. Турнера созданы транспедикулярные (?) системы 3,5 мм для коррекции врожденной деформации позвоночника на фоне нарушения формирования, слияния и сегментации позвонков в грудном и поясничном отделах, а также при тяжелых нестабильных переломах тел позвонков у детей раннего возраста. Крайне важно, что ученым в сотрудничестве с уральским заводом «Медин-Урал» удалось организовать импортозамещающее производство наборов инструментов и имплантатов для детской спинальной хирургии у детей от одного года до трех-четырех лет.
Николай Макаров, академик-секретарь Отделения историко- филологических наук РАН:
— В этом году 38 экспедиций вели работы от Калининграда до Чукотки, от Крыма и Дагестана до Новгорода и Вологды. Раскопки проходили также в Абхазии, Узбекистане, Казахстане и на Шпицбергене (Норвегия). Панорама находок, сделанных в разных точках страны, от западных до восточных границ, показывает цельность России и многообразие ее культуры со сложной историей.
Ученые раскопали несколько десятков уникальных артефактов — в частности, фрагменты фресок XII века в Новгороде, фортификационные объекты Великой Бактрийской стены, вскрыли новые культурные слои в древнем крымском городе Фанагория. А настоящей находкой года стала печать князя Владимира Мономаха. Она обнаружена в древнем прусском поселении «Привольное-1» под Калининградом.
В некрополе под Суздалем ученые обнаружили множество артефактов: древние монеты, топоры, подвески. Фото: Институт археологии РАН
Этот памятник археологии XI-XIII веков относится к «позднеязыческому» времени — периоду между эпохой викингов и началом крестоносной экспансии в Пруссию Тевтонского ордена. Она указывает на важнейшее значение этого древнего поселения для контактов пруссов и жителей древней Руси.
Неожиданный сюрприз преподнесли раскопки села Чаадаево под городом Муромом. Он всегда воспринимался как языческий дальний угол, захолустье, но мы здесь открыли прекрасную древнерусскую культуру. Найдено много элитных вещей, которые принадлежали местной знати. А самое главное, что впервые удалось полностью выявить планировку русского села XI-XII веков. Всегда считалось, что она была примитивной. Но в Чаадаеве она оказалась сложной, что необычно для сельской жизни того времени.
https://trmzk.ru/20221227-eksperty-nazvali-vazhnejshie-nauchnye-dostizheniya-2022-goda.dzen
30.12.22 | 30.12.2022 Смотрим. Топ-10 достижений российской науки в 2022 году |
Полина Ковалёва, биомедицинский инженер из МИСИС, участвовала в разработке биополимера для регенерации тканей.
Российским учёным в этом году пришлось быстро приспосабливаться к новым условиям и решать непредвиденные задачи, чтобы не останавливать развития отечественной науки.
Исследователи вновь доказали, что могут реализовывать смелые идеи даже в самой непростой международной обстановке. В этом им помогли и правительственные гранты — без финансовой поддержки государства многие проекты остались бы только на бумаге.
Уникальный ядерный реактор
В сентябре четвёртый энергоблок Белоярской АЭС в Свердловской области первым в мире был полностью переведён на инновационное МОКС-топливо.
Это позволит увеличить количество топлива, доступного для атомной энергетики, в десятки раз, рассказал директор атомной электростанции Иван Сидоров.
Но, самое главное, в реакторе БН-800 четвёртого энергоблока можно применять отработавшее ядерное топливо других АЭС. Конечно, после соответствующей обработки.
По показателям надёжности и безопасности БН-800 входит в число лучших ядерных реакторов мира.
Фото Уралэнергострой.
В отличие от обогащённого урана, который традиционно применяется в атомной энергетике, МОКС-топливо состоит из оксидов плутония и обеднённого урана. Такое топливо производят на предприятиях Росатома в Красноярском крае.
Оксид плутония получают при переработке отработавшего ядерного топлива, а оксид обеднённого урана — из так называемых вторичных хвостов производства обогащённого урана.
Это позволяет пустить в дело "излишки" производства и снизить необходимость добычи урана для ядерных реакторов — несомненно, полезный шаг с точки зрения экологии.
Имплантат, предсказывающий речь
Учёные из НИУ ВШЭ и Московского государственного медико-стоматологического университета им. А.И. Евдокимова разработали нейросеть, которая прогнозирует слова, которые хочет сказать человек, по активности его мозга.
Точность алгоритма составила 55% и 75% для двух испытуемых. Для этого первому вживили в небольшой участок мозга всего шесть электродов, а второму – восемь.
Похожую точность в других исследованиях показывают устройства с электродами, расположенными по всей поверхности мозга.
Поясним, что электроды были внедрены в мозг людей для терапии тяжёлой эпилепсии, а не просто ради эксперимента.
Компактное устройство можно будет имплантировать под местной анестезией, что обеспечит более безопасное вмешательство, чем существующие аналоги.
Платформа "Северный полюс"
Ледостойкая платформа "Северный полюс" отправилась в первую арктическую экспедицию в августе 2022 года.
Это уникальное научно-исследовательское судно предназначено для круглогодичных экспедиций в высоких широтах Северного Ледовитого океана.
Главная ценность платформы – 15 научных лабораторий, в которых будет изучаться природа Арктики.
Проект самодвижущейся платформы "Северный полюс" разработан для восстановления регулярных исследований в Центральной Арктике.
Иллюстрация ААНИИ.
На "Северном полюсе" будут проводиться геологические, акустические, геофизические и океанографические исследования. На одной из его палуб оборудована взлётно-посадочная площадка для вертолётов.
Судно способно проходить во льдах без помощи ледокола и обеспечивает комфортные условия для жизни экипажа и научного персонала при температуре до -50°C и влажности 85%.
Платформа открывает новую веху в полевых исследованиях Арктики. Экспедиции на дрейфующих льдинах, первая из которых прошла в северных широтах ещё в 1937 году, ушли в прошлое. Ледовые станции стали слишком небезопасны в условиях таяния арктических льдов.
Аналог самого сложного в мире минерала
Кристаллографы из СПбГУ с коллегами из Чехии и США получили в лабораторных условиях вещество, похожее на минерал юингит.
Он имеет самую сложную структуру на Земле из всех известных.
Кроме фундаментального научного интереса это исследование несёт и практическую ценность.
В основе юингита — нанокластеры из атомов урана и карбонатных групп. Когда учёные разберутся в "превращениях" юингита, они смогут, например, попытаться сделать процесс добычи и переработки урана менее опасным для человека.
Российский квантовый компьютер
В 2022 году учёные из Российского квантового центра запатентовали физическую реализацию компьютера на многоуровневых квантовых ячейках памяти — кудитах.
Если кубиты — квантовые биты — могут принимать значения 0, 1, а также находиться в состоянии суперпозиции, то кудиты могут "содержать" три, четыре значения и более. А это значит, они могут хранить и обрабатывать ещё больше информации, чем "традиционные" кубиты.
При этом архитектура, предложенная российскими учёными — не просто теория. Универсальный квантовый компьютер с облачным доступом планируется создать уже через пару лет.
А сама облачная платформа для квантовых вычислений команды QBoard и Российского Квантового Центра уже существует.
Квантовую микросхему, которая применялась в эксперименте, изготовили сотрудники Лаборатории искусственных квантовых систем МФТИ.
Фото НИТУ МИСиС.
В то же время учёные из НИТУ МИСИС и МФТИ создали первый в России квантовый процессор на 4 кубитах, который достиг 97% точности двухкубитных операций. Эксперимент был проведён 8 ноября 2022 года.
В обновлённую дорожную карту "Квантовые вычисления" правительства России входит создание квантового университета и программ дополнительного образования в этой сфере.
Импортозамещение в области квантовых технологий
Российский разработчик электронных устройств на основе квантовых технологий QRate представил детекторы одиночных фотонов, частиц света, которые смогут заменить иностранные устройства в условиях международных санкций в отношении России.
Такие детекторы являются ключевым компонентом в системах квантовой криптографии. Но применяются они и в телекоммуникациях, спектроскопии, разработке лекарственных препаратов, анализе ДНК и многих других научных областях.
Назальная вакцина от коронавируса
В 2022 году в гражданский оборот вышла назальная вакцина от коронавирусной инфекции, разработанная научным центром имени Гамалеи. Её предлагается применять в качестве бустера — через год после вакцинации стандартной вакциной от ковида.
Такая вакцина вводится в организм через нос и не требует использования иглы.
Самая тесная двойная чёрная дыра
Международная группа учёных получила новые доказательства наличия двойной сверхмассивной чёрной дыры в галактике OJ 287.
Вторая, менее массивная чёрная дыра вращается вокруг первой, дважды пронзая её аккреционный диск каждые 12 лет.
Этот рисунок иллюстрирует прохождение малой чёрной дыры через аккреционный диск большой.
Иллюстрация R. Hurt (NASA/JPL)/Abhimanyu Susobhanan (Tata Institute of Fundamental Research).
Новые данные были получены при участии космического проекта "Радиоастрон", который возглавляет Астрокосмический центр ФИАН и осуществляется при поддержке Роскосмоса.
Система OJ 287 является единственным на сегодняшний день известным представителем тесной двойной сверхмассивной чёрной дыры.
Первый спутник "Сферы" выведен на орбиту
22 октября 2022 года ракета-носитель "Союз-2.1б" стартовала с космодрома Восточный с первым аппаратом федерального проекта "Сфера" — "Скиф-Д" — на борту.
Роскосмос сообщает, что новый спутник позволит отработать технологии предоставления широкополосного доступа в интернет на всей территории России. Аналог американской системы Starlink.
Момент запуска ракеты "Союз-2.1б" с космодрома Восточный 22 октября 2022 года.
Роскосмос
В "Сферу" должны будут войти пять спутниковых группировок связи и пять группировок дистанционного зондирования Земли. В общей сложности для проекта "Сфера" будут созданы более 600 космических аппаратов.
Для этой и других нужд в России в будущих годах будет запущено серийное производство спутников.
Математическая модель сердечно-сосудистой системы
Российские исследователи из НИУ "Московский институт электронной техники" (МИЭТ) создали уникальное программное обеспечение. Оно позволяет прогнозировать, как тот или иной имплантат будет взаимодействовать с сердечно-сосудистой системой конкретного пациента.
Благодаря этому при разработке каждого отдельного устройства можно будет учесть индивидуальные особенности кровообращения пациента.
Это очень важный вклад российских учёных в персонализированную медицину будущего.