СМИ о нас
07.10.22 | 07.10.2022 Рамблер. Физики обесцветили искусственный алмаз при помощи света |
Фото: Индикатор
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микро-кодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН» исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
https://news.rambler.ru/science/49474467-fiziki-obestsvetili-iskusstvennyy-almaz-pri-pomoschi-sveta/
10.10.22 | 10.10.2022 Наука и жизнь. «Альберт, ты не прав» |
Как современные физики доказали, что гении тоже могут ошибаться, совершили вторую квантовую революцию и открыли для человечества новые возможности.
В этом году лауреатами Нобелевской премии по физике стали француз Ален Аспе, американец Джон Клаузер и австриец Антуан Цайлингер. В формулировке Нобелевского комитета указано, что эти учёные отмечены «за эксперименты с запутанными фотонами, которые продемонстрировали нарушение неравенств Белла и дали начало квантовой информатике». Что запутало эти фотоны, чем важна квантовая информатика и какую практическую пользу эти работы приносят человечеству, рассказывает Николай Колачевский, член-корреспондент РАН, директор Физического института им. П.Н. Лебедева.
Илл.: John Jost and Jason Amini/Nist, Science 2009
– Николай Николаевич, что такое квантовая запутанность и почему говорят, что физикам удалось распутать Вселенную?
– Для обывателя вопрос квантовой запутанности чрезвычайно непрост. Уже сто лет он будоражит умы учёных. Начался он в двадцатые годы прошлого столетия с так называемого парадокса Эйнштейна-Подольского-Розена, или ЭПР-парадокса. Изначально споры вокруг парадокса носили скорее философский характер, но именно тогда появилась квантовая механика, многие постулаты которой плохо поддаются изучению. Там мало простых ньютоновских аналогов. Мы живем в ньютоновском мире, мыслим ньютоновскими категориями, а квантовая механика оперирует вероятностями, которые могут быть отрицательными, и перепутанностью, которую очень сложно осознать в рамках привычных нам физических представлений.
Если пытаться нарисовать этот парадокс очень грубо, то суть его в следующем: если мы возьмём частицу с нулевым спином, которая может распасться на две частицы, то возможны два варианта – левая окажется со спином минус одна вторая, а правая плюс одна вторая, либо наоборот. Мы не знаем, какой выпадет вариант. Природа не определилась, какая из частиц окажется в том или ином месте. Других вариантов нет, поскольку законы сохранения энергии должны работать. Представим, что одна частица улетит на Венеру, а другая на Марс. Математически всё это описывается в одну строчку и называется белловским состоянием. Это и есть состояние запутанности.
– Оно запутано, именно потому что мы не знаем, куда что улетело?
– Да, именно так. Это был мысленный, гипотетический эксперимент, в результате которого учёные сделали вывод: эти частицы сохраняют состояние запутанности, но если мы получим возможность увидеть, что одна из частиц имеет спин плюс одна вторая, то спин другой частицы, как мы понимаем, равен минус одна вторая. Должна быть строгая корреляция между одним и другим событиями.
Если вернуться в привычный ньютоновский мир, то можно представить, что у нас есть коробка с двумя ботинками – правым и левым. Допустим, мы разрезали эту коробку пополам, и один ботинок отправили на Марс, другой на Венеру, и мы не знаем, где какой ботинок находится. Если, находясь на Марсе, мы видим, что ботинок правый, значит, на Венере должен быть левый. Но квантовая запутанность гораздо тоньше и сложнее: мы можем с этим правым ботинком провести какую-то операцию – например, попытаться переделать его в левый.
– А такое возможно?
– Да, поскольку мы говорим о квантовом состоянии. При этом вторая частица должна симметрично повторять то, что происходит с первой. Иначе говоря, кажется, что происходит обмен информацией, причем происходит мгновенно.
– Со скоростью света?
– Не совсем так. Скорость света, хоть и велика для нас, имеет конечное значение, а здесь речь идет о мгновенно отклике. Именно в этом и состоит парадокс. Возможности проверить эту историю экспериментально не было, поэтому парадокс оставался неразрешимым.
– Слышала, что Эйнштейн отвергал квантовую механику, и на этом был построен его принципиальный спор с Нильсом Бором...
– Да, отсюда и родилось знаменитое выражение Эйнштейна, что Бог не играет в кости, которое означает, что не может быть случайного результата, эта корреляция задана заранее, предопределена; существует некое пространство скрытых переменных, которое определяет результат, а нам только кажется, что это происходит случайным образом.
Фактически до 1980-х годов этот вопрос находился под завесой тайны, а сегодняшние Нобелевские лауреаты с использованием состояния запутанных фотонов начали проводить тесты, чтобы как-то проверить этот парадокс.
– Раньше такое было невозможно?
– И невозможно, и подвергать сомнению авторитет Эйнштейна считалось чем-то неприличным. Но в итоге выяснилось, что, действительно, две частицы в квантовой механике оказываются очень сильно коррелированы, и если я совершаю операцию над одной, то вторая зеркально повторяет это действие. Измерения четко это демонстрируют. Тесты так называемого неравенства Белла приводят к тому, что если я ставлю эксперимент над квантовой системой, то результат измерения должен быть больше суммы вероятностей – условно, больше двойки. А если квантовая природа случайна и существует эйнштейновский мир скрытых переменных, то эта величина оказывается меньше двойки. Возникает неравенство, которое в одном случае подтверждается, в другом нарушается.
Это долгая, насыщенная история, в которой было много оппонентов, не согласных с доказательствами, считавших, что попытка опровержения взглядов Эйнштейна сама по себе крамольна. Однако неоспоримая фундаментальная ценность этой работы в том, что наши трое коллег экспериментально подтвердили довольно простые постулаты квантовой механики. На бумаге они выглядят как совсем несложные математические выражения, показывающие, что нет никаких скрытых переменных, и природа именно так себя ведёт.
– Значит, неверно расхожее утверждение, что нет ничего случайного? Случайность существует?
– Да, существует. Запутанные частицы сохраняют корреляцию на больших расстояниях, что открывает новые колоссальные возможности – телепортация, передача квантовой информации, квантовые вычисления.
– Всегда есть люди, скептически настроенные по отношению к Нобелевке. Вы считаете, что в данном случае всё заслужено?
– Безусловно. Нобелевские награды часто критикуют за отсутствие практических приложений, но в данном случае это точно не так. Здесь есть глубокий философский смысл: интересное фундаментальное ядро коллеги смогли развить экспериментально, объяснив и подтвердив запутанность, которая, как отмечалось, на бумаге записывается очень просто.
– То есть, история оказалась не такой уж запутанной?
– Она действительно запутанная. То, что сегодня в этом направлении делается, находится на грани фантастики. Удалось доказать существование связи между удалённым частицами, в то время как световой сигнал не успевает распространиться от одной частицы к другой. Они друг про друга «знают» быстрее, чем световые импульсы успевают дойти.
– Каким же образом им это удаётся? Ведь мы привыкли думать, что ничего быстрее света в природе не существует.
– Механизм этого процесса нам пока непонятен. Тут есть над чем работать. При этом сами эксперименты могут быть очень яркими: так, недавно учёные захватили два атома на расстоянии десятков километров друг от друга, перепутали их, с помощью фотонов их «связали», а потом, совершая операции над одним атомом, как бы крутя «левый ботинок», они увидели, что правый тоже крутится.
Как это происходит, каким образом природе это удается, человечество ещё не разобралось, но то, что это происходит именно так, как предписывает квантовая механика, не вызывает сомнений. Это означает, что мы можем брать частицу, изменять её спектр, временные характеристики, какие-то свойства, а вторая откликнется, хотя она давно улетела на другой конец города, страны, земного шара.
– Или на другую планету. Знаю, что в руководимой вами лаборатории оптики сложных квантовых систем ведутся подобные исследования. В чём они заключаются?
– Несколько лет назад мы подключились к исследованиям по квантовым вычислениям. В России реализуется дорожная карта по квантовым вычислениям, которую курирует Росатом, и мы стали одной из научных групп, нацеленных на решение этих задач. Мы проводим свои исследования на основе ионов и видим, что операция над одной частицей напрямую влияет на состояние другой, и всё это также базируется на запутанности. Квантовая операция в ионном или фотонном компьютере – это продукт запутывания двух частиц.
У нас есть очень красивый эксперимент, когда ионы выстраиваются в цепочку. В простейшем понимании, один ион – это один кубит. Две соседних частицы с помощью лазерных импульсов и кулоновского взаимодействия, как два шарика на пружинке, запутываются между собой, и мы получаем состояние, о котором я говорил. Мы работаем на самом современном уровне, но основываясь на тех пионерских работах, которые были сделаны предшественниками. Кстати, в 2015-м году у нас в ФИАНе выступал Антуан Цайлингер с докладом на тему квантовой запутанности. Алан Аспе был у нас в 2018-м. Это было невероятно интересное общение.
– Чем ваши исследования оригинальны?
– Я говорил о том, что один ион – это один кубит. Но дело в том, что количество ионов, которые можно удержать в ловушке, сейчас обычно не превышает 50. Тут мы упираемся в техническое ограничение. Мы предложили и реализовали экспериментально, что можно записать в ион не один кубит, а несколько. Внутри одной частицы заключено несколько регистров квантовой информации, и они тоже взаимодействуют. Оригинальность наших работ как раз в том, что мы работаем не с кубитами, а с так называемыми куквартами, когда в одной частице задействовано четыре уровня. Это совершенно новое направление. Мы предложили оригинальную систему в ионе иттербия, больше никто в мире с такой не работает. А с такими сложными многоуровневыми системами работает всего три группы в мире.
Второе – совместно с Квантовым центром идёт работа в области оптимизации квантовых алгоритмов, чтобы с помощью минимального количества операций прийти к интересной реализации. Здесь мы тоже стали одними из идеологических лидеров в мире.
– Какие конкретные прикладные возможности всё это открывает?
– Здесь есть два направления, и оба активно развиваются. Первое – это квантовая коммуникация. Идея в том, что мы можем передавать зашифрованную информацию через состояние одиночных фотонов без возможности её перехватить. Это абсолютно защищённые каналы, базирующиеся на теореме запрета клонирования, известной в квантовой механике. Сегодня уже существуют каналы квантового шифрования, в том числе и в России. Здесь перепутанные состояния стали важнейшей веткой развития. Есть источники перепутанных состояний фотонов – фактически лазерные чипы, почти микросхемы, в которых один фотон идёт одному получателю, другой – другому, когда они обмениваются абсолютно защищёнными ключами. Эти технологии активно используются, например, в банковской сфере.
– Но что это даст обычным людям — не военным, не банкирам?
– В наше время очень мало кто не имеет отношения к банковской системе. Когда мы суём свою карточку в банкомат, происходит обмен цифры-ключа. Безопасность перевода денег базируется исключительно на качестве шифрования. Никто не хочет, чтобы с его счета «увели» деньги, не так ли? Точно так же, как никто не хочет, чтобы вашими персональными данными владели случайные люди, как, увы, нередко происходит. Развитие методов шифрования с помощью одиночных фотонов – это спасение. Для обывателя важен и вопрос безопасного подключения к Интернету, и вопрос защиты персональных данных – все эти вопросы сегодня обостряются, как никогда.
Второе направление, которое тоже активно развивается, как раз то, чем занимается моя лаборатория – квантовые вычисления. Практической пользы человечеству оно ещё не принесло, хотя ожидания очень большие. Это и телепортация, и квантовые операции, и многое другое.
– Когда я слышу слово «телепортация», сразу представляю себе фантастический фильм, где человек заходит в кабину, нажимает кнопку и тут же оказывается в совершенно другом месте. Тут же возникают разного рода опасности, как когда-то было показано в американском фильме ужасов «Муха». Как вы думаете, такое в принципе будет когда-нибудь возможно?
– Здесь идёт некоторое передергивание терминов. В фантастических произведениях идёт речь о телепортации материальных субстанций, что в принципе невозможно. Как говорил Михайло Ломоносов, «ежели где-то что-то прибыло, то где-то что-то убыло».
– А Фридрих Энгельс сказал, что «ничто не исчезает и не появляется вновь»...
– Всё верно. Закон сохранения энергии этому препятствует. Правильно говорить о передаче состояний. Мы понимаем, что отражение в зеркале – это не сам человек, но его чёткий, детальный образ. Поэтому мы говорим именно о телепортации квантовых состояний, когда мы можем с одного атома записать на другой точную информацию о нём.
Это, конечно, чудо – то, что уже сегодня мы можем на расстояние в сотни километров передавать волновую функцию, используя это для разного рода задач. Очень большие ожидания связаны с квантовыми компьютерами, когда квантовую информацию можно будет передавать с одного компьютера на другой. Такие компьютеры не смогут обмениваться информацией по Интернету, как происходит сейчас, им нужны специфические каналы связи, чтобы обмениваться квантовыми состояниями. Это вопрос нескольких десятилетий. Не прямо сейчас, но это обязательно будет.
Мы сейчас даже не можем себе представить, какие ещё перспективы это откроет, но они огромны. Сегодня мы говорим о второй квантовой революции, когда мы научились работать с отдельными фотонами, в то время как первая революция полностью изменила технологический уклад человечества.
Автор: Наталия Лескова
10.10.22 | 10.10.2022 Атомная Энергия 2.0. ФИАН принял участие в 20-й Азиатско-Тихоокеанской конференции по фундаментальным проблемам опто- и микроэлектроники APCOM-2022 |
Со 2 по 6 октября на базе Дальневосточного отделения РАН прошла 20-я Азиатско-Тихоокеанская конференция по фундаментальным проблемам опто- и микроэлектроники APCOM-2022, посвященная 100-летию Н.Г. Басова. Конференция собрала большое количество известных специалистов в области оптоэлектроники, лазерной физики, микроэлектроники и смежных приложений.
В приветственной лекции выдающуюся роль академика Басова в развитии лазерной физики в мире и в становлении научных школ ДВО РАН отметил председатель организационного комитета APCOM, вице-президент РАН, академик Ю.Н. Кульчин.
От Физического института им. П.Н. Лебедева РАН с приветственным словом выступил руководитель Троицкого обособленного подразделения ФИАН, член-корреспондент РАН А.В. Наумов. Он представил научные и технологические проекты ТОП ФИАН – научного наследия лауреата Нобелевской премии по физике 1964 года, академика Николая Геннадиевича Басова. Новое для ТОП ФИАН научное направление, связанное с флуоресцентной наноскопией одиночных молекул и квантовых точек, было представлено в приглашенном докладе А.В. Наумова "Fluorescence nanoscopy of single molecules and quantum dots".
По итогам конференции будет опубликован специальный тематический выпуск журнала Bulletin of the Russian Academy of Sciences: Physics.
Источник: ФИАН
07.10.22 | 07.10.2022 Полит.ру. Физики научились обесцвечивать искусственные алмазы |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет — а значит, и ювелирную ценность — алмазов, но также разработать метки для контроля за оборотом драгоценных камней. О работе рассказала пресс-служба Российского научного фонда.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Процесс исследования алмазов. Источник: Сергей Кудряшов
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П. Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М. В. Ломоносова и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, ведущий научный сотрудник и заведующий лабораторией лазерной нанофизики и биомедицины ФИАН Сергей Кудряшов.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров? Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon
10.10.22 | 09.10.2022 Научная Россия. Перспективные пути отечественной физики. «В мире науки», № 7–8 |
Острая необходимость создавать отечественную высокотехнологичную продукцию ставит перед российскими физиками новые задачи. Это касается медицинской техники, микроэлектроники, космических разработок и квантовых технологий. Прикладные проекты, над которыми работают в Физическом институте им. П.Н. Лебедева РАН, могут в перспективе заполнить технические пустоты отечественной промышленности.
Каким проектам физики уделяют сегодня особое внимание? Что мешает запускать отечественные технологии в массовое производство? Стоит ли ждать в больницах российские аппараты МРТ? Могут ли квантовые компьютеры в будущем появиться в квартирах? Об этом — в интервью с директором ФИАН, членом-корреспондентом РАН Николаем Николаевичем Колачевским.
Николай Николаевич Колачевский
— Сложилась ситуация, в которой России как никогда нужны свои технологии и разработки. На какие проекты и направления в нынешних условиях делают особенный упор в ФИАН?
— Мы оказались в сложной, но интересной ситуации: производство отечественной наукоемкой продукции сейчас наиболее актуально. Не хотелось бы попасть в тот же капкан, что и в 2014 г., когда было четкое понимание, что необходимы собственные технологии, но в результате восстановления логистических цепочек актуальность этой задачи утихла. Сейчас нам нельзя оказаться в той ловушке: без собственных разработок уже не получится уверенно двигаться вперед.
Понятно, что мы не сможем заменить абсолютно всю продукцию отечественной: например, трехнанометровые технологии полупроводников, скорее всего, в ближайшее десятилетие будут нам недоступны. Но это не значит, что микроэлектронной промышленностью не стоит заниматься совсем. Это же касается и других направлений.
В ФИАН всегда около половины исследований ориентированы на прикладные разработки, но их внедрению часто препятствует так называемая долина смерти. Подобная ситуация складывается, когда академические институты, в частности ФИАН, доводят технологию до определенного уровня готовности, например четвертого по шкале Technology Readiness Level: это значит, что готов действующий образец, который мы можем продемонстрировать в работе. Но в итоге в серийное производство разработка не идет — этим должны заниматься другие люди: технологи, инженеры, менеджеры. Я говорю о том, что «сделать бургер» и «продать бургер» — две совершенно разные задачи.
ФИАН разрабатывает новые технологии в различных направлениях. В медицинской области это магнитно-резонансный томограф, комплекс протонной терапии и лазерные системы — то есть устройства для диагностики заболеваний, лечения раковых опухолей и заболеваний глаз.
Кроме того, мы занимаемся микроэлектроникой. Эта область сейчас особенно востребована, я считаю, что ее надо выводить в приоритет. Уже открываются новые лаборатории, и чем больше умов начнет думать в этом направлении, тем вероятнее получить какие-то нетривиальные решения.
ФИАН тоже подключен к этой работе — мы занимаемся созданием инфракрасных детекторов и различных сенсоров.
Необходимо внимательно относиться к собственным научным проектам, касающимся космоса. Это программа «ЭкзоМарс», космические обсерватории «Спектр-М» и «Спектр-УФ» — очень достойные проекты, которые надо развивать. Если споткнуться сейчас, то в ближайшие годы у нас будет серьезный дефицит научных космических миссий.
Список существующих задач можно продолжать и продолжать. Это высокотемпературная сверхпроводимость и новые материалы. Много говорят о квантовых технологиях: квантовые вычисления и квантовая сенсорика — это работа с базой знаний, которую заложили наши отцы-основатели академики Н.Г. Басов и А.М. Прохоров. Но мы уже не просто исследуем атомы, молекулы и делаем спектроскопию, а пытаемся использовать результаты для практических задач: элементарных вычислений или регистрации полей.
— Насколько плотно лаборатории различных направлений связаны и часто ли взаимодействуют?
— Конечно, многие разработки завязаны друг на друга. Есть инфраструктурные связующие проекты, такие как микроэлектроника. Сегодня практически в любой области науки и технологий нужны аналого-цифровые или цифро-аналоговые преобразователи, микроконтроллеры, мелкая электроника. Это можно сравнить с хлебом, который мы так или иначе регулярно употребляем.
Мы всячески поощряем взаимодействие отделов внутри института, и это приносит результаты. Кроме того, совместная работа важна для студентов. Когда человек начинает работать в нашем институте и по каким-то причинам хочет поменять область исследований, ему не нужно переходить в другую организацию — достаточно поменять лабораторию и научного руководителя. Такие ситуации встречаются часто и дают эффективные результаты. Надеюсь, что подобные связи будут укрепляться и дальше.
— На заседании президиума Российской академии наук в конце марта ФИАН заявил о своей разработке аппарата МРТ. Тогда же сотрудник вашего института рассказал, что эта разработка отличается в лучшую сторону от зарубежных аналогов. Расскажите подробнее, что это за аппарат?
— Это был крупный проект Министерства промышленности и торговли по разработке опытного образца МРТ, выполненный нами в кооперации с другими организациями. Мы сделали аппарат с полем в 1,5 Тесла — это золотой стандарт для медицинской диагностики. Аппарат МРТ прошел все медицинские испытания, о нем хорошо отзывались коллеги из Института неврологии.
А затем наступило затишье — то, о чем я говорил в начале интервью: сложилась ситуация, в которой проще закупить аппараты, чем налаживать производство. Теперь в государственно-имиджевом плане важно показать, что мы можем справиться с задачами, направленными на пользу обществу. Под эгидой «Росатома» и «Ростеха», с привлечением организаций РАН формируется крупный проект по производству отечественных магнитно-резонансных томографов.
ФИАН как научная организация может оказать научно-методическое и техническое сопровождение, помочь с программным обеспечением. В обществе востребованы стабильные аппараты МРТ с полем в 1,5 Тесла и хорошим разрешением, желательно достичь уровня аппаратов Siemens.
Второй этап — это развитие аппаратов. Например, возможность избавиться от жидкого гелия с помощью системы замкнутого цикла. На заседании президиума РАН в марте мы говорили именно о такой машине. С томографами, которые могут функционировать без заливки жидкого гелия, проще работать в регионах и полевых госпиталях, где могут быть проблемы с доставкой охлаждающего вещества. С другой стороны, гелия в России хватает и, я надеюсь, дефицита в ближайшее время не возникнет.
Еще одно важное направление — создание небольших мобильных аппаратов МРТ. У них может быть не такое высокое разрешение, как у стационарных устройств, но их можно использовать вне помещений, например установив на базу грузовика. Это важно во время техногенных катастроф или автомобильных аварий, когда необходимо понять, везти ли пострадавшего срочно в НИИ скорой помощи им. Н.В. Склифосовского или можно оказать помощь в местной больнице.
Ученые ФИАН создали отечественный аппарат МРТ с полем в 1,5 Тесла. Образец устройства установлен в институте
Фото: отдел по связям с общественностью ФИАН
— Насколько мы сегодня близки к созданию таких аппаратов?
— Все, что я перечислил: и классические полуторатесловые аппараты, и безгелиевые, и мобильные установки, — уже создано в России в виде опытных образцов. Одна из машин стоит в ФИАН, ее можно запустить и сделать снимок.
Но сейчас стоит вопрос их тиражирования, для которого в том числе нужно решать вопросы кооперации и импортозамещения. Для производства аппаратов МРТ, работающих без гелия, нужна сложная охлаждающая система компрессоров замкнутого цикла. Это смесь вакуумной системы с системой высокого давления. Подобные устройства разрабатывают в Омске, но они предназначены для других задач, поэтому их мощности недостаточно для наших целей. То есть для тиражирования безгелиевых томографов нужно пройти еще довольно длинный путь, хотя контакт с коллегами уже налаживается.
При создании классических аппаратов МРТ с полем в 1,5 Тесла могут быть определенные сложности с электроникой. Магнитно-резонансный томограф регистрирует сигналы с помощью приемных катушек на частотах в сотни мегагерц. Необходимы микроконтроллеры и высокочастотные преобразователи — надо понимать, что мы не сможем сделать 100% необходимой электроники в стране, ее нужно закупать. И параллельно вести свои разработки.
— Какие задачи в области медицинской техники кроме создания аппаратов МРТ нужно сегодня решить?
— Сейчас в рамках крупного проекта Министерства науки и высшего образования РФ стоит задача по синхротронным исследованиям. Это протонная терапия онкологических опухолей.
Ускоритель разгоняет пучок протонов и направляет его в человеческое тело. В зависимости от энергии пучок останавливается на определенной глубине в теле, выжигая опухоль без хирургического вмешательства, причем в сложнодоступных участках организма: голове и шее. Это известная разработка, таким методом не первый год лечат пациентов в Медицинском радиологическом научном центре им. А.Ф. Цыба в Обнинске.
Наш институт развивает эту технологию. В частности, необходимо научиться лечить опухоли не только в голове и шее, но и во всем теле. Кроме того, есть множество нерешенных научно-медицинских задач: исследования реакции опухоли на воздействие протонов; взаимодействие альфа-частиц с человеческим телом и опухолями; увеличение эффективности лечения раковых опухолей с помощью одновременно применяемых методов терапии.
Это важная задача государственного масштаба, и одна из целей десятилетия науки и технологий — создание комплекса протонной терапии в Москве. Несмотря на большое население и несколько крупных онкологических центров, протонных установок в Москве нет, пациентам приходится ездить в Обнинск, Санкт-Петербург и Димитровград. Мы планируем установить комплекс на территории института, для этого уже освободили здание.
Мы рассчитываем, что в какой-то момент начнется тиражирование центров протонной и ионной терапии в стране, этот тренд ярко прослеживается в ведущих странах мира. Понятно, что это не уникальный метод терапии раковых опухолей, но именно сочетанное воздействие, например химиотерапия и протонный подход, часто дает очень хороший результат. Если 20 лет назад онкологический диагноз был чрезвычайно тяжелым для человека, то сегодня увеличить срок и качество жизни — вполне реальная задача. Медицина очень серьезно изменилась в этой области, и ФИАН тоже внес свой вклад.
— Другая популярная сегодня тема — это квантовые технологии и создание квантовых компьютеров. Объясните максимально просто, так, чтобы понял каждый человек, что такое квантовый компьютер и какие задачи он должен решать?
— Просто объяснить можно, но это будет достаточно примитивное определение. Дело в том, что у квантовых эффектов нет прямых механических аналогов. Мы живем в ньютоновском мире: шарики, пружинки, силы, ускорения... Объяснить квантовые процессы максимально просто — это значит объяснить их в терминах ньютоновской механики, что будет не совсем корректно.
В классических компьютерах мы подаем команды, которые за счет гигантской тактовой частоты, достигающей десятков гигагерц, последовательно обрабатываются: один-ноль-ноль, один-один-ноль, один-один-один и т.д. Квантовая система позволяет одновременно подать и обработать несколько таких команд — это то, что называется квантовой суперпозицией. Соответственно, на выходе получается в определенном смысле запутанный результат.
Это нужно для решения многих задач искусственного интеллекта и корреляции. Например, нам нужно найти в интернете изображение кота. В нейросети есть определенный образ кота, нет необходимости изучать изображение попиксельно, система соотносит определенную модель с другими изображениями, ищет связи и в результате выдает фотографию кота. За счет того, что квантовый компьютер может одновременно, а не последовательно обрабатывать данные, задача распознавания, поиска таких корреляций серьезно упрощается.
Если бы 20 лет назад, когда я был увлекающимся физиком и много времени проводил в лаборатории, мне сказали, что можно достаточно просто получать квантовую информацию с единичных атомов, я бы сильно удивился. По тем временам это была фантастика, мы с трудом могли взаимодействовать с облаком атомов, а сейчас их можно выстроить в цепочку. В МГУ выстраивают нейтральные атомы, у нас в лаборатории — ионы. С технологической точки зрения это очень большой прогресс.
— В ФИАН работает единственный в России ионный квантовый компьютер. Какие на нем сегодня проводятся исследования и эксперименты?
— В ионном квантовом компьютере, который стоит в нашей лаборатории, всего четыре кубита. Мы понимаем, что это немного. Квантовые компьютеры, сделанные за рубежом, полноценно работают на 15 кубитах.
Наша задача — до конца года сделать 16-кубитный ионный компьютер, и важно, чтобы он был подключен к облачной платформе. То есть внешние пользователи смогут подключиться к этой системе и выполнить на машине некоторые операции.
Современные классические компьютеры справляются с задачами быстрее, чем квантовые, в которых меньше 20 кубитов. При этом важно понимать, что мощность квантового компьютера экспоненциально растет с количеством кубитов: 21-кубитный компьютер в два раза мощнее, чем 20-кубитный. Поэтому на нашем четырехкубитном компьютере пока нельзя решить какие-то важные прикладные задачи, но уже можно продемонстрировать определенные преимущества квантового вычислителя перед классическим в решении некоторых своеобразных задач, связанных с поиском корреляции. Это исследовательская работа, и я думаю, что в течение десяти лет квантовые компьютеры будут востребованы для решения ряда специфических задач.
В единственном созданном в России ионном квантовом компьютере Физического института РАН четыре кубита. Задача института — до конца года создать 16-кубитный квантовый компьютер
Фото: отдел по связям с общественностью ФИАН
— Когда-то и классические компьютеры были уделом исключительно лабораторий и оборонных структур. Никто даже не задумывался, что компьютер будет стоять практически в каждой квартире. Возможно ли, что в будущем появятся персональные квантовые компьютеры?
— В 1970-х гг. шло развитие ламповых машин: как тогда мерялись количеством ламп в устройствах, так сегодня мы меряемся количеством кубитов. А революция произошла, когда, во-первых, был изобретен транзистор, во-вторых, мы перешли с магнитных лент на винчестеры. Размер домена, который требуется для записи бита информации, стал меньше микрометра, и это был существенный прогресс, активно подтолкнувший развитие технологий. Люди понимали, как должен функционировать компьютер, и алгоритмы, работавшие на ламповых машинах, продолжили работать и на транзисторах.
Но научный перелом привел к масштабированию технологии. Подобного перелома мы ждем и в области квантовых вычислений. Конечно, здесь нельзя ничего обещать, но это мировой тренд и очень интересные исследования.
Установка ARPES в Центре высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга
Фото: отдел по связям с общественностью ФИАН
— В России объявлено Десятилетие науки и технологий. Каких открытий в области физики стоит ждать за эти годы и чем уже занимаются в ФИАН?
— Начать надо с электроники — это очень актуальная тема.
Во-первых, это электроника в области сенсорики инфракрасного диапазона. Мы стремимся к тому, чтобы высокочувствительные детекторы спектральных инфракрасных диапазонов работали не только при азотных температурах. Это актуально для целого ряда задач — и гражданских, и оборонных. Второе важное и интересное направление — квантовые сенсоры: гравиметры, градиометры, гироскопы. Мы их совершенствуем: используем новые материалы, повышаем чувствительность и делаем компактнее. Направление, которое ФИАН развивал и продолжит развивать, — это часы на борту спутников ГЛОНАСС.
Развиваться будет и направление мощных лазеров. У нас есть объемный блок совместных с Научным центром физики и математики задач и по лазерному термоядерному синтезу, и по исследованию плазмы. Все-таки в этом году столетие Н.Г. Басова, и на фундаменте, который он заложил в основу лазерных технологий, продолжает строиться большая пирамида.
Отдельно развивается ветка миллиметровой радиоастрономии — исследование центра галактики и черных дыр. В этой области есть огромное количество прикладных аспектов: разработка детекторов миллиметрового диапазона, повышение частоты коммуникации, повышение частоты связи, регистрация паров воды.
В стране нужно создать ионный источник лечения онкологических заболеваний. Работу с протонами ФИАН прошел успешно, сейчас надо развивать технологии. Дело в том, что не все опухоли разрушаются протонами: несмотря на облучение частицами с очень высокими энергиями, некоторые опухоли остаются, но к ионам они более чувствительны. Думаю, что за десять лет мы справимся с этой задачей.
И, конечно, есть мечта о сверхпроводнике, работающем при комнатной температуре. Сейчас рекорд температуры составляет -20° С, но это происходит при давлении порядка миллиона атмосфер. Нам важно понять, можно ли уменьшить это давление: если мы сможем сделать сверхпроводник, способный работать при комнатной температуре, это будет очень существенный технологический прорыв. Может, это фантазии, а может, природа нам что-то подскажет в этом направлении.
Автор Александр Бурмистров
Оператор Александр Козлов
Фотограф Ольга Мерзлякова
https://scientificrussia.ru/articles/perspektivnye-puti-otecestvennoj-fiziki-v-mire-nauki-no-7-8
06.10.22 | 06.10.2022 Научная Россия. Физики обесцветили искусственный алмаз при помощи света |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Процесс исследования алмазов. Источник: Сергей Кудряшов
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления, — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Художественная иллюстрация локального обесцвечивания искусственных алмазов. Источник: Carbon
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН», исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
Информация и фото предоставлены пресс-службой Российского научного фонда
Разместила Ирина Усик
https://scientificrussia.ru/articles/fiziki-obescvetili-iskusstvennyj-almaz-pri-pomosi-sveta
06.10.22 | 06.10.2022 РНФ. В России научились очищать синтетические алмазы от дефектов при помощи лазеров |
Российские ученые разработали подход, позволяющий использовать лазеры для очистки искусственных алмазов от большинства присутствующих в них дефектов в виде атомов азота и прочих элементов, встроившихся в кристаллическую решетку из атомов углерода. Этот подход позволит увеличить качество и прозрачность производимых алмазов, сообщила в четверг пресс-служба Российского научного фонда (РНФ).
Художественная иллюстрация локального обесцвечивания искусственных алмазов. Источник: Carbon
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки новых способов контроля за оборотом искусственных алмазов», — заявил ведущий научный сотрудник Физического института РАН (Москва) Сергей Кудряшов, чьи слова приводит пресс-служба РНФ.
На сегодняшний день значительная масса алмазов, используемых в различных абразивных материалах и для решения других промышленных задач, производится искусственным путем из дешевого углеродного сырья. Главной причиной этого является то, что на синтез алмазов тратится меньше энергии и средств, чем на их добычу из недр Земли.
Существующие методики производства синтетических алмазов обладают несколькими существенными недостатками. В частности, наиболее общепринятые подходы, в том числе взрывной синтез драгоценных камней, не позволяют получать однообразные наноалмазы, имеющие схожие размеры и свойства. В дополнение драгоценные камни часто содержат в себе дефекты — вкрапления атомов азота и других элементов, влияющих на цвет, прозрачность и другие свойства алмазов.
Лазерная очистка алмазов
Кудряшов и его коллеги разработали инновационный подход, позволяющий избавиться от большинства подобных дефектов и тем самым повысить качество искусственных драгоценных камней. Ученые совершили это открытие в ходе наблюдений за тем, как с лазерным излучением взаимодействуют синтетические алмазы, окрашенные в частично красный оттенок.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения», — пояснил Кудряшов.
Последующие наблюдения показали, что высокочастотная обработка алмазов при помощи лазера привела к обесцвечиванию и исчезновению большинства дефектов в тех точках, которые были облучены лазерными импульсами. Как предполагают исследователи, это произошло из-за того, что атомы азота были «выбиты» излучением или же соединились в более крупные группы, не взаимодействующие с видимым светом.
Процесс исследования алмазов. Источник: Сергей Кудряшов
Этот подход, как отмечают исследователи, можно использовать не только для очистки искусственных алмазов от дефектов, но и для внесения незаметных для глаза узоров и сообщений, закодированных в виде набора из атомов азота или прочих точечных дефектов внутри толщи этих драгоценных камней. Это позволит создать систему контроля за оборотом искусственных алмазов, подытожили ученые.
Источник: ТАСС
https://rscf.ru/news/presidential-program/nauchilis-ochishchat-sinteticheskie-almazy-ot-defektov/
06.10.22 | 06.10.2022 RT Наука. Цвет алмазов |
Учёные из Физического института имени П.Н. Лебедева РАН, МГУ имени М.В. Ломоносова, ИТЭР-Центра и ООО «ВЕЛМАН» (Новосибирск) предложили способ, позволяющий изменить окраску искусственных алмазов. Об этом RT сообщили в пресс-службе РНФ.
Для эксперимента исследователи взяли алмазы красного цвета, лабораторно выращенные под действием высоких температур и давления. Специалисты облучали искусственные кристаллы лазером и смогли точечно обесцветить их за счёт влияния на структуру центров окраски.
Таким образом авторы смогли изменить оптические свойства алмазов.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем как изменить цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — отмечают учёные.
06.10.22 | 06.10.2022 ТАСС. В России научились очищать синтетические алмазы от дефектов при помощи лазеров |
Российские ученые разработали подход, позволяющий использовать лазеры для очистки искусственных алмазов от большинства присутствующих в них дефектов в виде атомов азота и прочих элементов, встроившихся в кристаллическую решетку из атомов углерода. Этот подход позволит увеличить качество и прозрачность производимых алмазов, сообщила в четверг пресс-служба Российского научного фонда (РНФ).
"Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки новых способов контроля за оборотом искусственных алмазов", - заявил ведущий научный сотрудник Физического института РАН (Москва) Сергей Кудряшов, чьи слова приводит пресс-служба РНФ.
На сегодняшний день значительная масса алмазов, используемых в различных абразивных материалах и для решения других промышленных задач, производится искусственным путем из дешевого углеродного сырья. Главной причиной этого является то, что на синтез алмазов тратится меньше энергии и средств, чем на их добычу из недр Земли.
Существующие методики производства синтетических алмазов обладают несколькими существенными недостатками. В частности, наиболее общепринятые подходы, в том числе взрывной синтез драгоценных камней, не позволяют получать однообразные наноалмазы, имеющие схожие размеры и свойства. В дополнение драгоценные камни часто содержат в себе дефекты - вкрапления атомов азота и других элементов, влияющих на цвет, прозрачность и другие свойства алмазов.
Лазерная очистка алмазов
Кудряшов и его коллеги разработали инновационный подход, позволяющий избавиться от большинства подобных дефектов и тем самым повысить качество искусственных драгоценных камней. Ученые совершили это открытие в ходе наблюдений за тем, как с лазерным излучением взаимодействуют синтетические алмазы, окрашенные в частично красный оттенок.
"Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления - так называемые HPHT-алмазы. Импульсы были очень короткими - всего триллионная доля секунды - и с ультрамалой энергией, но облучали кристалл с большой частотой повторения", - пояснил Кудряшов.
Последующие наблюдения показали, что высокочастотная обработка алмазов при помощи лазера привела к обесцвечиванию и исчезновению большинства дефектов в тех точках, которые были облучены лазерными импульсами. Как предполагают исследователи, это произошло из-за того, что атомы азота были "выбиты" излучением или же соединились в более крупные группы, не взаимодействующие с видимым светом.
Этот подход, как отмечают исследователи, можно использовать не только для очистки искусственных алмазов от дефектов, но и для внесения незаметных для глаза узоров и сообщений, закодированных в виде набора из атомов азота или прочих точечных дефектов внутри толщи этих драгоценных камней. Это позволит создать систему контроля за оборотом искусственных алмазов, подытожили ученые.
https://nauka.tass.ru/nauka/15972909
06.10.22 | 06.10.2022 Поиск. Учёные обесцветили искусственный алмаз при помощи света – Carbon |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микро-кодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН» исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
Пресс-служба Российского научного фонда