СМИ о нас

07.11.23 06.11.2023 Аргументы и факты. Кровавое небо. Физик объяснил, почему сияния были красными и опасны ли они

Вечером 5 ноября во многих регионах России наблюдали масштабные полярные сияния. Они были видны даже на юге, в Крыму и Ростовской области. Сияния имели ярко выраженный красный оттенок, что можно увидеть нечасто.

Причина — накрывшая планету очень сильная магнитная буря, одна из наиболее мощных за последние несколько лет. Она началась на Земле примерно в 13:00 по московскому времени в воскресенье и продолжается до сих пор. Но почему сияния были красными и не опасно ли это явление для самолётов, о чём поспешили написать некоторые телеграм-каналы?

Рядовой выброс стал экстремальным

«Событие вызвано плазменным облаком, выброшенным с Солнца в сторону Земли ещё около двух дней назад, 3 ноября. По всем признакам выброс рассматривался как рядовой, — сказано в сообщении Лаборатории солнечной астрономии Института космических исследований РАН и Института солнечно-земной физики СО РАН. — И скорость, и мощность выброса, как теперь понятно, были оценены абсолютно неправильно, хотя это всё равно не объясняет, как столь слабая причина смогла вызвать бурю наблюдаемого уровня».

Как уточняют учёные, измерения космических аппаратов, через которые облако плазмы прошло к Земле, показали, что у неё было собственное магнитное поле, ориентированное противоположно к направлению земного магнитного поля. Именно это, скорее всего, дополнительно усилило воздействие на магнитосферу планеты.

Магнитная буря была классифицирована как G3 (это третий класс по 5-балльной шкале). Тем не менее она недотянула до бури 23-24 апреля, которая в пике достигала G4 и стала рекордным событием не только этого года, но и последних нескольких лет.

«На настоящий момент Земля находится в облаке солнечной плазмы, в котором, судя по всему, останется как минимум до завтрашнего утра, — сообщает Лаборатория солнечной астрономии. — Практически всё восточное полушарие на северных широтах от 65 градусов и выше „залито“ полярными сияниями. Отдельные полосы могут спускаться до широт 50-55 градусов, но пока таких сообщений не поступало».

Согласно прогнозу Института прикладной геофизики, 6 ноября геомагнитное поле слабо возмущённое, а 7 ноября — неустойчивое. «Радиационная обстановка ожидается невозмущённая. Возможно ухудшение условий КВ-радиосвязи в течение суток», — сказано на сайте института.

«Представим, что это торт…»

С просьбой объяснить, чем вызван красный цвет вчерашних полярных сияний и могут ли они представлять угрозу для самолётов, aif.ru обратился в Физический институт им. П. Н. Лебедева РАН.

«Полярное сияние происходит из-за того, что частицы солнечного ветра сталкиваются с верхней атмосферой Земли. Это приводит к возбуждению атомов и молекул газов, входящих в её состав. Они начинают излучать в разных спектральных линиях, и тогда мы видим полярное сияние, — говорит научный сотрудник Астрокосмического центра Физического института им. П. Н. Лебедева РАН Вячеслав Авдеев. — Его цвет зависит от высоты, с которой идёт излучение. При большей плотности газов, то есть в более низких слоях атмосферы, оно бывает зелёным, а в верхних слоях — красным.

Представим, что это такой торт: наверху находится красный «крем», а внизу — зелёное «тесто». Поскольку сияние происходит в верхних (северных) широтах планеты, наблюдателю, находящемуся на юге, будет лучше видна его «шапка». Таким образом, чем южнее наблюдатель, тем больше он видит красный «крем» и тем меньше — зелёное «тесто». А чем он севернее, тем больше будет смешения цветов и тем разнообразнее картина.  

Таких сияний будет всё больше

Что касается угрозы самолётам, тут полярных сияний опасаться не стоит, считает Вячеслав Авдеев. Они происходят на гораздо большей высоте, чем летают пассажирские авиалайнеры. Самолёт не подключён к электрической цепи, и габариты у него небольшие: вряд ли разность напряжения наведённых токов на разных его концах будет существенной.

«Известно, что магнитные бури вызывают сбои в работе техники. И чем мощнее выброс солнечной массы, тем больше негативного воздействия, — продолжает учёный. — Могут возникать поверхностные заряды на трансформаторах и трубопроводах, выходить из строя энергетические сети. Спутниковые навигационные системы могут давать сигнал с ошибкой, что влияет на безопасность тех же самолётов. Но такое возможно при очень сильных магнитных штормах, а вчерашняя буря по своей мощности на него не тянет.

Сильнейшая за всю историю наблюдений геомагнитная буря случилась в 1859 году, в историю она вошла как Солнечный супершторм, или „событие Кэррингтона“. Тогда по всей Европе и Америке отказали телеграфные системы. С тех пор ничего подобного не было, а опасаться стоит разве что именно такого события. В наше время оно могло бы привести к коллапсу энергосистем по всему миру, поэтому в разных странах существуют протоколы, что делать, если такое повторится. В первую очередь нужно будет на время отключить от электросетей всё, что только можно.

Кстати, сейчас Солнце приближается к максимуму своей активности, поэтому стоит ожидать, что сильных магнитных бурь и полярных сияний будет больше».

https://aif.ru/society/nature/krovavoe_nebo_fizik_obyasnil_pochemu_siyaniya_byli_krasnymi_i_opasny_li_oni

 

07.11.23 05.11.2023 Научная Россия. Заглянувший в микромир. День рождения академика Михаила Данилов

Один из самых авторитетных российских физиков, внесший огромный вклад в развитие Стандартной модели, описывающей всю нашу видимую Вселенную, главный научный сотрудник ФИАН, лауреат премии Макса Планка академик Михаил Владимирович Данилов празднует сегодня день рождения.

М.В. Данилов — один из самых ярких и значимых ученых-физиков, занимающихся микромиром, то есть мельчайшими частицами, из которых состоит мир. При его активном участии исследовались свойства прелестных и очарованных кварков, тау-лептона и тау-нейтрино, обнаружено большое количество новых частиц, а также рассчитаны пределы вероятности рождения хиггсовского бозона и частиц зеркальной материи.

Благодаря усилиям академика российские ученые считаются рекордсменами по количеству регистрируемых в день самых неуловимых частиц — нейтрино. В интервью «Научной России» в 2021 г. М.В. Данилов рассказывал: «Пять тысяч нейтрино в день. Надо заметить, что Паули, когда он предложил нейтрино, написал письмо своему другу, где сказал (я цитирую по памяти), что сделал что-то ужасное, то, что теоретик никогда не должен делать. Предсказал частицу, которую экспериментаторы никогда не увидят. Но он ошибся — мы их регистрируем в большом количестве».

М.В. Данилов — автор и соавтор 883 научных работ, на 153 из которых имеется более 100 ссылок. Он создал известную во всем мире научную школу экспериментальной физики элементарных частиц. Под его руководством защищена 21 кандидатская диссертация, девять его учеников стали докторами физико-математических наук или профессорами, двое были избраны в РАН. Большинство из них продолжают работу в России.

В настоящее время академик и его команда продолжают исследования самых загадочных явлений во Вселенной — темной материи и антиматерии, разбираются, почему существует асимметрия вещества и антивещества. Благодаря усилиям М.В. Данилова уточняется Стандартная модель и ведутся поиски новых законов физики.

Коллектив портала «Научная Россия» желает Михаилу Владимировичу доброго здоровья и удачи на пути исследования Вселенной — от микромира до крупнейших галактик!

https://scientificrussia.ru/articles/zaglanuvsij-v-mikromir-den-rozdenia-akademika-mihaila-danilova

04.11.23 04.11.2023 Российская академия наук. РАН на Международных молодёжных «Циолковских чтениях»

26-28 октября в кировском Музее К. Э. Циолковского, авиации и космонавтики состоялись Международные молодёжные «Циолковские чтения», посвящённые памяти великого русского учёного, основоположника космонавтики Константина Циолковского.

Председателем чтений выступил академик РАН Виктор Савиных – лётчик-космонавт СССР, дважды Герой Советского Союза, почётный гражданин г. Кирова и Кировской области. 

В работе Чтений приняли участие научный руководитель ИНАСАН член-корреспондент Борис Шустов и руководитель ТОП ФИАН им. П. Н. Лебедева член-корреспондент РАН, профессор РАН Андрей Наумов.

В качестве экспертов приняли участие выдающиеся представители космической науки, планетариев России, Казахстана и Беларуси, признанные деятели культуры и искусства. Во втором туре чтений участвовали порядка 100 школьников и студентов, 40 экспертов и 50 наставников. Одному из участников чтений был вручён специальный приз от корпуса профессоров РАН.

Программа Чтений включала защиту конкурсных работ в 9 секциях:

* «Исследование космического пространства»
* «Космическая техника и технология»
* «Аэрокосмическое моделирование и макетирование»
* «Космос: медицина и экология»
* «История авиации и космонавтики»
* «Космическая философия»
* «Фантастика и космос»
* «Авторские фильмы об авиации и космонавтике»
* «Географические информационные технологии и дистанционное зондирование Земли»

В Чтениях приняли участие представители из 21 региона России, а также ряда зарубежных государств.
 
Кроме того, в ходе поездки члены РАН эксперты чтений и другие почётные гости прочитали серию открытых публичных лекций в школах г. Кирова – в том числе в Кировском физико-математическом лицее, Кировском экономико-правовом лицее и других общеобразовательных учреждениях.

https://new.ras.ru/activities/news/ran-na-mezhdunarodnykh-molodyezhnykh-tsiolkovskikh-chteniyakh/

01.11.23 01.11.2023 ТроицкИнформ. Физикам о физике

«Школа учителей физики – важное событие для нашего города! Троицк – наукоград России. Поэтому мы должны популяризовать науку и делать всё, чтобы о наших учёных знали далеко за пределами нашего города», – сказал глава Троицка Владимир Дудочкин. Он торжественно открыл VII Троицкую школу повышения квалификации преподавателей физики «Актуальные проблемы физики и астрономии: интеграция науки и образования». Эта масштабная конференция проходит при поддержке РАН. Благодаря ей преподаватели общеобразовательных школ будут прослушивать лекции от ведущих учёных, посещать круглые столы и ходить на экскурсии в научные институты нашего города.

Конференция стартовала в понедельник, 30 октября. Гостей поселили в Оздоровительном комплексе «Десна». Там же состоялась церемония открытия. По видеосвязи к участникам обратился вице-президент РАН, академик Степан Калмыков. Он рассказал, что взаимодействие учёных и учителей – один из приоритетов для Академии наук. «Без постоянного притока новых молодых людей невозможно существование ни одного института и центра, – отметил Калмыков. – А горящие глаза ребят, которые приходят поступать в вузы, их интерес к науке – всё это благодаря вам, педагогам. Поэтому мы стараемся помочь вам заинтересовать наукой ещё больше молодых людей».

В этом году участниками Школы стали 37 педагогов из разных регионов России, в том числе Москвы, и Троицка и около 40 студентов разных вузов. Первую лекцию для них прочёл директор Института физики высоких давлений РАН Вадим Бражкин.

Вадим Бражкин подготовил лекцию о фазовых переходах и физике углерода. Он рассказал об образовании атомов этого химического элемента в недрах звёзд, о причинах его уникальности и переходе от графита к алмазу. Академик участвует в конференции с самого её основания и считает, что для учителей это хорошая возможность не только узнать о новых открытиях физиков, но и научиться проще доносить информацию до учеников. «Общее образование нужно всем: и академикам, и учителям, и школьникам, – говорит Бражкин. – Поэтому я всегда стараюсь дополнять свои лекции чем-то новеньким и интересным, чтобы мои слушатели потом доносили эту информацию до школьников».

Кстати, именно вовлечение подростков в естественные науки – одна из важнейших задач Школы. Современные выпускники всё реже выбирают физику в качестве профильного ЕГЭ. С этой тенденцией учёные намерены бороться. «Мы должны привлечь детей, чтобы они не пугались экзамена по физике, донести, что физика это интересно, а значит несложно, – говорит член-корреспондент РАН, руководитель ТОП ФИАН и председатель оргкомитета ТШПФ Андрей Наумов. – Нужно рассказывать подросткам, что они могут сделать успешную карьеру и в науке, и в технологиях, могут состояться в жизни и собственным умом заработать деньги».

В этом году на Школе учителей физики было много новичков. «Я только два месяца назад переехала в Москву, до этого жила и работала во Владивостоке, – рассказала учитель физики Химкинского лицея Наталья Кислова. – Я так обрадовалась, когда меня отправили на эту конференцию, это настоящий подарок судьбы. Я смогу пообщаться с людьми, которые готовят ЕГЭ, для меня это очень важно». «Коллеги здесь уже бывали, рассказывали, как здесь интересно, поэтому я примерно представляю, что меня здесь ждёт, – говорит учитель физики и математики казанского физмат Лицея №131 Сергей Юркин. – Мне нравится, что здесь хорошо продуманы образовательная часть и досуг. Очень жду экскурсии в научные институты».

Экскурсии начались прямо в день открытия. После лекции и круглого стола, посвящённого ОГЭ и ЕГЭ по физике и астрономии, участники отправились в научные институты. Первым стал ИФВД РАН, вторым – ТИСНУМ. Программа Школы учителей физики рассчитана на всю неделю. Завершающий день – пятница, 3 ноября. Все участники конференции получат удостоверения о повышении квалификации государственного образца.

Анна РОМАНОВА, фото Александра КОРНЕЕВА и Михаила ФЕДИНА

https://троицкинформ.москва/fizikam-o-fizike/

16.01.24 30.12.2023 Научная Россия. Наука-2024. Чего ждут ученые в новом году?

В следующем году Российская академия наук отпразднует 300-летний юбилей. Это значимая для отечественной науки дата, к которой приурочивают многочисленные форумы, выставки и публикации. В целом год ожидает быть научно насыщенным: это долгожданный запуск коллайдера NICA в Дубне и окончание строительства установки СКИФ в Новосибирской области, развитие квантовых вычислений и продолжение работ по созданию центра протонной терапии в Москве, ожидание новых астрономических результатов. А еще медико-биологические исследования в области космонавтики, управление группами роботов и экономический анализ возможности технологической независимости.

Об ожиданиях и планах ученых на 2024 г. ― в материале «Научной России».

Фото: Елена Либрик / «Научная Россия»

300-летие Российской академии наук

В 2024 г. Российская академия наук отпразднует 300-летие: значимая и ожидаемая дата. Говорить о праздновании юбилея и готовиться к нему начали несколько лет назад. В преддверии праздника ученые готовили научные работы, посвященные истории академии, проводились форумы, выставки и семинары. Осенью 2023 г. на площадке президиума РАН прошло первое и истории заседание четырех академий: наук, образования, художеств и архитектуры.

Значительное внимание при праздновании юбилея уделят Санкт-Петербургу: в 2023 г. академия наук открыла в Северной столице региональное отделение, председателем которого выбрали ректора Санкт-Петербургского политехнического университета Петра Великого академика Андрея Ивановича Рудского. Именно в Санкт-Петербурге в 1724 г. указом Петра I была открыта академия наук. А в следующем году здесь пройдут многочисленные встречи, в том числе торжественное выездное заседание президиума РАН. Следите за новостями юбилейного года вместе с нами!

И еще одно важное изменение, связанное с Российской академией наук. В начале 2024 г. будет отменено деление научных институтов на категории. Окончательно об этом на общем собрании членов Российской академии наук заявили министр науки и высшего образования Валерий Николаевич Фальков и президент РАН Геннадий Яковлевич Красников. Три категории институтов определяют разницу в их финансировании. Глава академии отметил, что эта система мешала развиваться институтам, попавшим во вторую и третью категории. В.Н. Фальков сказал, что система, которая должна прийти на смену категорийности, будет направлена на формирование конкурентной среды в сфере исследований и технологий и позволит институтам активно двигаться вперед.

Мегасайенс в России: NICA и СКИФ

В подмосковной Дубне завершается строительство коллайдера NICA. В конце 2024 г. ученые Объединенного института ядерных исследований планируют запустить установку класса мегасайенс и провести первые столкновения тяжелых ядер. В эксперименте физики рассчитывают воссоздать условия, возникшие во Вселенной через десять микросекунд после Большого взрыва, и получить кварк-глюонную плазму. Это поможет глубже понять фундаментальные законы строения материи. Подробнее о запланированном эксперименте предлагаем прочитать в интервью с ученым ОИЯИ Анатолием Олеговичем Сидориным «Свободу кваркам?».

В конце 2024 г. планируют достроить и другой научный объект высшей категории — Сибирский кольцевой источник фотонов (СКИФ). Указ, регламентирующий окончание работ, подписал президент России В.В. Путин. На сайте проекта сообщается, что в декабре следующего года будут завершены все строительно-монтажные и пусконаладочные работы: это ускорительный комплекс и шесть экспериментальных станций первой очереди.

Космос, далекий и близкий

2024 г. ожидается богатым на исследования в области космоса. Это очередной этап обзора всего неба в рентгеновском диапазоне, создание новых спутников связи, результаты годового изоляционного эксперимента, космические роботы и возвращение человека на лунную орбиту.

В апреле отечественный телескоп ART-XC им. М.Н. Павлинского завершит очередной обзор всего неба в рентгеновском диапазоне. Новый этап исследований небесной сферы начался в середине октября. Из-за корректировок научной программы телескоп приостановил обзор неба в марте 2022 г.: тогда немецкий телескоп eROSITA, также установленный на борту обсерватории «Спектр-РГ», был переведен в спящий режим, и российские ученые разработали новую программу исследований для максимально эффективной работы телескопа ART-XC.

В следующем году начнется производство спутников «Скиф» для одноименной группировки в рамках программы «Сфера». Это альтернатива зарубежным проектам Starlink и OneWeb: «Сфера» должна обеспечить Россию спутниковой связью и интернетом. Осенью в «Роскосмосе» сообщили, что заключен контракт на производство шести космических аппаратов.

Интересных результатов стоит ждать в области медико-биологического обеспечения космических полетов. В 2023 г. ИМБП РАН запустил очередной этап эксперимента SIRIUS: в ноябре шестеро участников программы отправились в годовую изоляцию в научный модуль на территории института. По сценарию эксперимент имитирует полет экипажа на Луну. Ученые собирают научные данные о влиянии изоляции и ограничения пространства на психологическое и физическое состояние экипажа. В будущем эта информация понадобится при подготовке долгосрочных космических миссий. Эксперимент завершится в ноябре 2024 г. А летом, в конце июля или, при переносе сроков, в конце августа, на полярную орбиту будет запущен аппарат «Бион-М» № 2. Орбита аппарата, на котором в космос отправят 75 мышей, насекомых и растения, повторяет орбиту, на которую в будущем выведут российскую орбитальную станцию, а исследования должны дать информацию о том, как электромагнитная обстановка и радиационное излучение влияют на живых существ. Эксперимент будут обеспечивать более 20 научных устройств. Сейчас ученые переходят от стадии их разработки к изготовлению летных образцов. Устройства передаются в РКЦ «Прогресс» для их испытаний.

И еще одна цель: в 2024 г. человечество вернется в окололунное пространство. Ожидается, что в ноябре следующего года будет запущена первая за более чем полвека лунная миссия с участием человека: на корабле Orion к естественному спутнику Земли отправятся четверо астронавтов NASA. По плану миссия продлится около десяти дней, в течение которых астронавты долетят до Луны, облетят ее и вернутся на Землю.

Роботы ― ближе к людям

Летом 2023 г. от Москвы до Санкт-Петербурга проехали первые отечественные грузовики ― значительное достижение российской робототехники, которая будет развиваться и в следующем году. О планах развития робототехнической науки рассказал главный научный сотрудник Института проблем управления им. В.А. Трапезникова РАН профессор РАН Роман Валерьевич Мещеряков.

По словам ученого, основные усилия специалистов ИПУ РАН будут сконцентрированы на развитии человеко-машинных интерфейсов, а также появятся результаты в области управления группой роботов. То есть перед группой роботов будет ставиться крупная задача, а отдельные участники должны определять свое место, положение и цели для ее решения. Например, в области сельского хозяйства: один беспилотник должен облететь территорию, чтобы обнаружить проблемы или задачи, другой ― доставить на место необходимые ресурсы, третий ― убрать урожай, четвертый ― контролировать это взаимодействие. Подробнее об этом предлагаем прочитать в интервью с Р.В. Мещеряковым «Занимаясь робототехникой, мы должны оставаться людьми», которое портал «Научная Россия» публиковал этим летом.

Кроме того, в этом году президент РФ В.В. Путин подписал указ «О развитии природоподобных технологий». По словам Р.В. Мещерякова, это стимулирует научные исследования в области нейроморфных архитектур.

«Сегодня мы находимся практически на пике перехода от классических вычислительных архитектур к вычислительным структурам другого класса: например, спайковым нейросетям и гибридным биологическим системам управления. Мы видим, что в следующем году воздушные и наземные роботы смогут работать в группе, естественным образом предвосхищать действия человека и в целом развиваться для облегчения жизни человека. С другой стороны, мы надеемся, что это позволит человеку уделять больше времени социальной жизни, а не уходу в виртуальный мир», ― сказал Р.В. Мещеряков.

Роман МещеряковФото: Ольга Мерзлякова / «Научная Россия»

Квантовые вычисления, протонная терапия, микроэлектроника

Кубиты для практических задач

В 2024 г. вряд ли получится показать квантовое превосходство на отечественных компьютерах, но создать и представить ряд практикоориентированных алгоритмов, продемонстрировать прикладную эффективность квантовых вычислений в отдельных направлениях возможно. Этим в следующем году будут заниматься ученые Физического института им. П.Н. Лебедева РАН.

«Сегодня у нас лучший алгоритмический квантовый компьютер в России: в 2023 г. мы создали устройство на 20 кубитах. ФИАН ― единственный институт в стране, который в 2024 г. способен решить задачи по созданию квантовых алгоритмов для практических задач. Но гонка продолжается: и мировая, и на уровне российских институтов. Предсказать, как дальше будут развиваться квантовые вычисления, пока непросто. Интересные результаты показывают квантовые вычисления на нейтральных атомах, мы запустим эту ветку исследований в следующем году. Квантовые вычисления остаются одним из ключевых направлений института, и в комплексе они приведут к интересным научным и технологическим результатам», ― рассказал директор ФИАН член-корреспондент РАН Николай Николаевич Колачевский.

Отечественные установки МРТ

Вопрос создания отечественных установок магнитно-резонансной томографии широко обсуждался в прошлом году. Тогда ФИАН представил разработки МРТ с полем в 1,5 Тесла. Н.Н. Колачевский рассказал, что исследования продолжаются, сотрудники института участвуют в научном сопровождении проекта, но теперь его курирует госкорпорация «Росатом». Как и прежде, производство российских установок планируют начать в перспективе двух-трех лет.

Физики для медицины

Физики тесно сотрудничают с онкологами: ядерную медицину называют одним из важнейших направлений в области борьбы с опухолями. В этой области продолжает работать и ФИАН совместно с Медицинским радиологическим научным центром в Обнинске.

«Мы совместно с коллегами из МРНЦ им. А.Ф. Цыба и МИФИ получили интересные медико-практические результаты: выяснили, что некоторые тяжелые частицы усиливают эффект протонной терапии. А также освоили технологии векторной доставки этих частиц и провели широкий комплекс исследований на мышах. Это ложится в основу целого направления дальнейших исследований, которое мы рассчитываем продолжить в 2024 г.», ― рассказал Н.Н. Колачевский. Ученый добавил, что продолжаются и исследовательские работы в области ионной терапии.

«В ближайшие годы это будет для нас одной из ключевых задач. Направление востребовано обществом и врачами. Медики в один голос говорят, что такие исследования крайне важны для лечения ряда специфических онкологических заболеваний», ― отметил Н.Н. Колачевский.

На базе Физического института РАН продолжаются работы по созданию центра протонной терапии. Корпус освобожден, в конце следующего года, возможно, будут отремонтированы некоторые помещения. По словам Н.Н. Колачевского, именно подготовительные работы займут бóльшую часть времени и сил.

Инфракрасный диапазон и ультрафиолет

Актуальная задача института в области технологической независимости ― обеспечение микроэлектронной отрасли. В частности, это создание светочувствительных элементов для среднего инфракрасного диапазона. Такое направление востребовано в том числе оборонной промышленностью. Директор ФИАН рассказал, что в течение последнего года ученые института научились выращивать отдельные структуры, и в 2024 г. появятся первые прототипы гетероструктур, которые могут быть использованы в рамках импортозамещения.

Второе близкое направление, связанное с микроэлектроникой, ― это создание структур на нитриде галлия: ультрафиолетовых светодиодов и лазеров. «Сейчас мы завершаем апгрейд наших установок в рамках обновления приборной базы. К середине 2024 г. будут первые попытки создать фотоизлучающие элементы в ультрафиолетовом диапазоне», ― рассказал Н.Н. Колачевский.

Николай КолачевскийФото: Ольга Мерзлякова / «Научная Россия»

Экономика технологической независимости, международные расчеты в цифровой валюте и анализ влияния шоковых факторов на экономическое развитие

В следующем году Россия продолжит развиваться в условиях санкций: предпосылок к снижению экономического давления пока не предвидится. Новые условия, в которых существует мировая экономика, ученые определяют как ее «фрагментированность». Сложившаяся ситуация диктует приоритетные направления научных исследований в области экономики. О планах на 2024 г. корреспонденту портала «Научная Россия» рассказал директор Института экономики РАН (ИЭ РАН) член-корреспондент РАН Михаил Юрьевич Головнин.

Приоритетная область исследований ученых ИЭ РАН ― международная макроэкономика. Направление связано с влиянием внешних факторов на экономику России. «Дело в том, что за неполную четверть XXI в. мы уже видели несколько подобных мощных воздействий. Это мировой экономический и финансовый кризис в 2008–2009 гг., российский кризис, связанный с падением мировых цен на нефть и санкциями, в 2014–2016 гг., кризис, связанный с пандемией COVID-19 в 2020 г., воздействие новых беспрецедентных санкций на российскую экономику в течение последних лет. Хотелось бы обобщить опыт влияния внешних шоков на российскую экономику и сопоставить влияние внешних и внутренних факторов. Это одна из фундаментальных задач, которую мы начнем решать в 2024 г. и продолжим в последующие годы», ― рассказал М.Ю. Головнин.

Еще одно важнейшее и популярное направление ― достижение технологического суверенитета. Ученые должны конкретизировать задачи с экономической точки зрения: стопроцентное замещение импортной продукции невозможно, а значит, необходимо определить несколько критически важных направлений. М.Ю. Головнин отметил, что это экономическое исследование уже проводится и продолжится в следующем году. В частности, ученые должны определить, какого состояния достигло импортозамещение в высокотехнологичных отраслях, и внести практические предложения, которые помогут добиться независимости.

Курс смещения внешнеэкономического вектора России в сторону восточных стран очевиден. Но в новых условиях требуются дополнительные исследования, связанные с включением России в интеграционные процессы в «поясе соседства». «“Пояс соседства” ― это концепция, разработанная в Институте экономики РАН. Она связана с выделением круга стран, с которыми Россия, с одной стороны, граничит, а с другой ― достаточно тесно экономически взаимодействует. Это страны Европы на Западе, страны постсоветского пространства и восточноазиатские страны. В течение длительного времени наблюдается тенденция постепенного сдвига внешнеэкономических связей в сторону восточных стран. В следующем году мы сосредоточим внимание на исследовании двусторонних экономических отношений России со странами ”пояса соседства”. В условиях санкций все сложнее выстраивать многосторонние форматы, а двустороннее взаимодействие позволяет более эффективно налаживать связи и реализовывать потенциал экономического взаимодействия с отдельными странами, который прежде был отчасти упущен», ― подчеркнул М.Ю. Головнин.

Ученый добавил, что в последнее время все больше внимания уделяется Монголии, поскольку экономические связи на Востоке во многом монополизированы Китаем, а значит, требуется диверсификация внешнеэкономических связей России с азиатскими странами.

Будут продолжены и исследования, связанные с изучением патерналистского государства: речь идет о государстве, формирующем системы ценностей, в том числе для экономики. В 2024 г. ученые ИЭ РАН сосредоточатся на гуманитарном секторе экономики: это наука, культура, образование и здравоохранение. Государство формирует определенные целевые установки и обеспечивает организацию этого сектора экономики. При этом зачастую возникает проблема бюрократии ― то, что называют бюрократическим, или управленческим, провалом. Ученым предстоит разработать механизмы преодоления этих трудностей. «В этой области мы начали применять новые инструменты: это большие опросы экономистов на базе данных Новой экономической ассоциации, объединяющей ведущие академические институты и вузы экономического профиля. Проводя опросы среди ученых, мы получаем интересные результаты».

Весной 2023 г. портал «Научная Россия» опубликовал интервью с М.Ю. Головниным «Цифровое будущее рубля». Мы говорили о запуске пилотного проекта Центробанка по внедрению цифрового рубля. ИЭ РАН уже несколько лет проводит семинар, посвященный цифровым финансам. Сегодня особое внимание уделяется цифровым валютам центральных банков различных стран, а в следующем году акцент в обсуждениях будет сделан на трансграничных операциях и международных расчетах в цифровой валюте.

«Внедрение цифровых валют центральных банков позволит выстроить в том числе системы международных расчетов, независимые от монополизированных систем, например SWIFT. Сейчас эта тема пользуется особой популярностью, например в части создания новых систем расчетов в рамках БРИКС. Поиск альтернативных систем расчетов ― это одна из поставленных задач при председательстве России в БРИКС в 2024 г.», ― рассказал М.Ю. Головнин.

Михаил ГоловнинФото: Ольга Мерзлякова / «Научная Россия»

https://scientificrussia.ru/articles/nauka-2024-cego-zdut-ucenye-v-novom-godu

16.01.24 28.12.2023 ТроицкИнформ. Встреча экспертов

Церемония «Человек года» – традиционное завершение троицкого года. Она проходит в пятницу, ближайшую к 8 февраля – Дню российской науки. Подготовка к церемонии идёт полным ходом. Определены тройки лидеров. 26 декабря в Выставочном зале с претендентами на звание Человека года познакомились члены экспертного совета.

Открыл встречу глава города Владимир Дудочкин. Он подвёл итоги уходящего года и поздравил экспертов с началом работы по церемонии «Человек года». В этом году голосовать предстоит за восемь номинаций: «Наука», «Молодой учёный», «Инновации и бизнес», «Образование», «Культура», «Физкультура и спорт», «Городская среда», «Город и общество», по три претендента в каждой.  Кроме последней: там 2. В общей сложности получилось 23 видеоролика: именно столько в этот вечер посмотрели члены экспертного совета, чтобы лучше узнать кандидатов на главное звание года.

Тройка в «Науке» выглядит так: ведущий научный сотрудник ТОП ФИАН Владимир Величанский, завлабораторией ИСАН Павел Мелентьев, завлабораторией ИФТ ФНИЦ «Кристаллография и фотоника» Евгений Хайдуков.

Номинация «Молодой учёный»: научный сотрудник ТОП ФИАН Мария Васьковская,  научный сотрудник ИЯИ РАН Александр Мефодьев, старший научный сотрудник ИЗМИРАН Наталия Шлык.

«Инновации и бизнес»: гендиректор роботехнической компании Ronavi Robotics Иван Бородин, старший научный сотрудник ТИСНУМ Никита Казённов, гендиректор ООО «Новиком» (ТОП ФИАН) Владимир Усиков.

Номинация «Образование»: режиссёр театральной студии «Восхождение» Лицея Троицка Татьяна Андреева, учитель математики Гимназии Троицка Алёна Избасова, учитель русского языка и литературы Гимназии
им. Н.В. Пушкова Неля Сушкова.

«Культура»: преподаватель Троицкой ДШИ им. Глинки Александр Жаров, замдиректора ТЦКТ Лариса Клокова, руководитель студии вокала и звукозаписи «Джем», кавер-группы «Бридж бенд» Центра «МоСТ» Анна
Малкова.

«Физкультура и спорт»: инструктор по спорту базы «Лесная» Илья Безгин, тренер Дворца спорта «Квант» Татьяна Украинская, тренер-преподаватель ДЮСШ-2 Владимир Шатохин.

«Городская среда»: генеральный директор ГНЦ РФ ТРИНИТИ Кирилл Ильин (за проект «Мирный Атом – ТРИНИТИ 2023»), директор Троицкого музея им. Лялько Оксана Павлова (за проект «Чайный сад России»), директор МБУ «ДХБ» Сергей Кутовой (за телеграм-чат МБУ «ДХБ» для оперативной связи с жителями).

Номинация «Город и общество»: Троицкий гуманитарный центр» (за оказание помощи бойцам СВО, жителям, которые остались без жилья и средств для проживания); волонтёрское движение «ZVеробой Троицк» (за организацию сбора, закупки и отправки всего необходимого бойцам СВО).

Но есть претенденты, с которыми никто познакомиться пока не сможет: это спецноминации, они будут объявлены позже, прямо на церемонии в феврале.
Познакомившись с кандидатами, эксперты могут взвешенно принять решение. Голосование состоится в январе.

Светлана МИХАЙЛОВА,
фото Александра КОРНЕЕВА

https://троицкинформ.москва/vstrecha-ekspertov/

09.01.24 27.12.2023 Научная Россия. Итоги-2023. Лекарство от ВИЧ, вакцинация без иглы и восстановление нервных клеток

2023 г. оказался впечатляюще плодотворным в области медицины. Подводя итоги года, портал «Научная Россия» предлагает читателям вспомнить важнейшие открытия уходящего года в мировой и отечественной медицинской науке. А их было немало в самых разнообразных сферах — от борьбы с раком и ВИЧ до восстановления тканей и диагностики депрессии.

Итоги — 2023. Лекарство от ВИЧ, вакцинация без иглы и восстановление нервных клеток. Источник изображения: katemangostar / фотобанк Freepik

Новые способы лечения рака: от наночастиц до нейросети

Большой вклад в борьбу со злокачественными опухолями внесли в 2023 г. российские ученые. Исследователи из Томского государственного университета разработали искусственный интеллект, способный по данным спектроскопии тканей со стопроцентной точностью выявлять рак кожи (меланому) и рак простаты, а также определять степень злокачественности последнего по специальной шкале Глисона. Использовали спектроскопию для выявления рака кожи и эксперты из Физического института им. П.Н. Лебедева РАН, которые научились отличать пораженную ткань от здоровой с точностью более 95% на основе информации о липидном составе клеточных мембран.

Ученые ИТМО и Института органической и физической химии им. А.Е. Арбузова создали соединения, запускающие самоуничтожение раковых клеток.Фото: Дмитрий Григорьев / ITMO.NEWS (пресс-служба ИТМО)

Прогресс был достигнут и в области лечения злокачественных опухолей. Например, эксперты из ИТМО и Института органической и физической химии им. А.Е. Арбузова ФИЦ КазНЦ РАН вместе с британскими коллегами создали вещества, которые избирательно активируют самоуничтожение раковых клеток, не затрагивая здоровые ткани. При этом токсичность новых соединений оказалась почти в десять раз ниже, чем у существующих аналогов. Исследователи из Института биофизики будущего МФТИ привлекли к борьбе с раком специальные наночастицы — таргосомы. В ходе испытаний на животных эти целевые наноносители для химиофототерапии рака показали более чем 90-процентную эффективность уничтожения опухолей. Одно из самых необычных открытий сделали ученые Тихоокеанского института биоорганической химии им. Г.Б. Елякова Дальневосточного отделения РАН, установив, что природные соединения, полученные из морских звезд Solaster pacificus и бурой водоросли Saccharina cichorioides, подавляют развитие злокачественных опухолей, а в сочетании с рентгеновским излучением вызывают программируемую гибель раковых клеток.

«Сейчас также ведется разработка комбинации новых методов. Монорадионуклидную терапию комбинируют с препаратами. Иммунотерапия продвигается таким образом. Появились и молекулярные, генетические разработки», — поделился с корреспондентом «Научной России» главный онколог Минздрава академик Андрей Дмитриевич Каприн.

Новая эра в борьбе с ВИЧ

Уникальное лекарство от ВИЧ, способное полностью уничтожать вирус, а не переводить его в хроническую форму, как это делают существующие препараты, представили ученые Федерального исследовательского центра Биотехнологии РАН вместе с коллегами из США и Италии. Новый класс соединений — N-фенил-1-(фенилсульфонил)-1H-1,2,4-триазол-3-амины — может не только убивать вирус иммунодефицита человека прямо в нейронах, но и блокировать обратную транскриптазу ВИЧ — фермент, отвечающий за размножение вируса. Что важно, экспериментальный препарат безвреден для самих нейронов. К настоящему времени перспективное соединение уже прошло доклинические исследования, ученые проанализировали его токсичность и фармакинетику.

Венец медицинского импортозамещения. Первый отечественный томограф

Уходящий год приблизил запуск в серийное производство первого российского аппарата МРТ, созданного специалистами Физического института им. П.Н. Лебедева РАН. Прототип разработки был впервые представлен общественности в преддверии 2023 г. и уже успешно прошел испытания в Центре неврологии РАН и Центре нейрохирургии РАН.

Первый российский аппарат МРТ, созданный в Физическом институте им. П.Н. Лебедева РАН.Фото: Владислав Стрекопытов / © РИА Новости

Первый отечественный томограф на 70% состоит из деталей российского производства, но ученые преследуют еще более амбициозную цель: достичь 95-процентного уровня импортозамещения. Устройство делает более качественные снимки, чем зарубежные аналоги, при этом стоит на 25% дешевле. Секрет экономичности томографа — в возможности применения сухих магнитов, которые можно остужать без использования жидкого гелия.

«По сложности аппарат можно сравнить с космическим спутником. Очень много разных систем, и каждая требует отдельной разработки. Поэтому участвовали самые разные специалисты. Проект удалось реализовать благодаря высокой технологической культуре, которая, к счастью, сохранилась в нашей академии наук», — рассказал «РИА Новости» заведующий криогенным отделом ФИАН, доктор физико-математических наук, профессор Евгений Иванович Демихов.

Вакцинация… без иглы!

Новый способ вакцинации без укола иглой разработали ученые из Саратовского государственного университета им. Н.Г. Чернышевского и НИИ гриппа им. А.А. Смородинцева. Методика, предложенная исследователями, позволяет вводить в организм препарат по волосяным фолликулам. Технология была успешно испытана на лабораторных мышах. Чтобы достичь цели, ученые внедрили вакцину от гриппа в микроскопический носитель-матрицу из биосовместимого карбоната кальция и нанесли препарат на кожу животных. Для доставки вакцины в организм через волосяные фолликулы исследователи применили ультразвуковое воздействие — сонофорез. Большое преимущество метода заключается в активации в коже клеток врожденного иммунитета, приводящей к сильному адаптивному иммунному ответу. В некоторых случаях это делает инновационный способ введения вакцин эффективнее в сравнении с подкожными и внутримышечными инъекциями.

Депрессия: определить и обезвредить!

2023 г. порадовал значимыми достижениями и в сфере выявления депрессии.

Ученые предложили диагностировать депрессивное расстройство по активности нейронов мозга пациентов.Источник изображения: nuevoimg / фотобанк 123RF

Эксперты Первого МГМУ им. И.М. Сеченова привлекли к решению проблемы искусственный интеллект. Созданная исследователями программа научилась с высокой точностью выявлять признаки депрессивного расстройства в речи человека по высоте голоса, скорости произношения, наличию пауз и эмоциональной окраске произносимых слов. Согласно планам, изобретение ляжет в основу мобильного приложения для самодиагностики депрессии.

Не менее интересный метод обнаружения депрессивного расстройства предложили ученые Балтийского федерального университета им. Иммануила Канта (Россия), Пловдивского медицинского университета (Болгария) и Мадридского политехнического университета (Испания), придя к выводу, что психическое заболевание можно диагностировать по результатам магнитно-резонансной томографии. Оказалось, что у больных и здоровых пациентов по-разному проявляют активность объединения нейронов, которые играют роль «узлов» функциональной сети головного мозга человека.

Новые лекарства против туберкулеза

Сразу несколько групп исследователей предложили применять новые вещества для борьбы с туберкулезом. Эксперты из Института общей и неорганической химии им. Н.С. Курнакова РАН, Института элементоорганических соединений им. А.Н. Несмеянова РАН, Института общей генетики им. Н.И. Вавилова РАН и Центрального научно-исследовательского института туберкулеза вывели несколько новых соединений магния, отлично показавших себя в подавлении туберкулезной палочки. Присоединились к коллегам и ученые Уральского федерального университета и Института органического синтеза УрО РАН, установившие, что эффективность в борьбе с туберкулезом и некоторыми другими устойчивыми инфекциями проявляют производные растительного вещества кумарина, применяемого при создании парфюмов и косметики. А исследователи из МГУ им. М.В. Ломоносова разработали антиоксидант и антибиотик SkQ1, который уничтожает туберкулезные бактерии не только в свободной форме, но и внутри легочных человеческих клеток — альвеолярных макрофагов.

Соединения магния показали эффективность в борьбе с туберкулезом.Фото: к.х.н. Дмитрий Ямбулатов / пресс-служба ИОНХ РАН

Битва с диабетом: от препаратов до технологий

Декабрь 2023 г. ознаменовался важным открытием, которое впервые в истории дает надежду на возможность лечения диабета I типа при помощи таблеток. Ученые из Института медицинских исследований Святого Винсента (Мельбурн, Австралия) выяснили, что лекарство барицитиниб, обычно применяемое в борьбе с ревматоидным артритом, может подавлять прогрессирование у людей диабета и помогать организму вырабатывать собственный инсулин.

Успехи были достигнуты и в области контроля диабета. Например, эксперты Массачусетского технологического института успешно испытали на животных прототип специального имплантата для диабетиков, который производит инсулин и кислород и продолжает успешно справляться со своей функцией даже при накоплении рубцовой ткани. Схожее устройство — «умный пластырь» для введения в организм лекарств при помощи микроигл, который можно будет встроить в специальный браслет или приклеивать на кожу, — предложили для терапии пациентов с диабетом ученые СПбГЭТУ «ЛЭТИ». А разобраться в механизме опасного заболевания ученым и врачам поможет открытие исследователей из Техасского университета в Эль-Пасо, выявивших в мозге человека области, активирующиеся при изменении уровня глюкозы в крови.

Отследить по карте устойчивость к антибиотикам

Для всего мира актуальна проблема утраты антибиотиками эффективности из-за выработки вредоносными микроорганизмами устойчивости к лекарствам. Чтобы иметь возможность более продуктивно бороться с опасными болезнями, российские эксперты создали карту антимикробной резистентности AMRmap, на основании которой врачи и пациенты могут получать обновляемую и тщательно проверяемую информацию о распространении во всех регионах России штаммов микроорганизмов, на которые не действует терапия.

Проблема борьбы с микроорганизмами, устойчивыми к лекарствам, в современном мире обретает все большую актуальность.Источник изображения: virtosmedia / фотобанк 123RF

«Каждый год мы получаем примерно 9 тыс. микроорганизмов из различных регионов и изучаем их чувствительность. Только после этого они появляются на карте», — рассказал ректор Смоленского государственного медицинского университета Минздрава РФ член-корреспондент РАН Роман Сергеевич Козлов на онлайн-заседании научного совета РАН «Науки о жизни».

Чтобы ускорить процесс сбора данных, эксперты создали дополнительную систему AMRcloud, в которую информацию об устойчивых штаммах микроорганизмов может загружать любое учреждение, располагающее качественными исследовательскими технологиями.

Восстановить кости… и нервные клетки

Не стоят на месте и разнообразные технологии восстановления живых тканей организма. Например, кто из нас не слышал утверждение о том, что нервные клетки не восстанавливаются? Кажется, нейробиологи из США и Швейцарии готовы поспорить с этим мнением — ведь в 2023 г. они представили технологию восстановления нервных волокон спинного мозга при помощи сложной генной терапии. Эксперты научились не только активировать рост нейронов в живом организме, но и стимулировать их прорастание через место повреждения и «подключение» к нужным точкам на другой стороне поражения. Применение терапии успешно «поставило на лапки» лабораторных мышей с травмами спинного мозга.

Много медицинских открытий было сделано в области регенерации костей — в основном они связаны с разнообразными имплантатами, помогающими восстанавливать костную ткань. Например, исследователи ФИЦ «Красноярский научный центр СО РАН» в сотрудничестве с Сибирским федеральным университетом и ЧУЗ «Клиническая больница “РЖД-Медицина”» предложили использовать для помощи в заращивании поврежденных костей полностью биоразлагаемые трехмерные каркасы из природного полимера оксипроизводных жирных кислот. Испытания на подопытных свиньях показали, что структура искусственного каркаса активно заселялась клетками костной ткани, что позволило успешно восстановить сильно поврежденную кость за пять месяцев. А группа российских исследователей с участием экспертов из Университета Лобачевского (ННГУ), Сеченовского университета и Института химической физики им. Н.Н. Семенова РАН и других научных организаций разработала синтетическую костную ткань, полностью воспроизводящую неоднородную структуру естественной кости. Новая технология позволила вдвое ускорить заживление травм у подопытных животных в сравнении с обычными однородными имплантатами.

Российские ученые создали синтетическую костную ткань, воспроизводящую неоднородную структуру естественной кости.Фото предоставлено пресс-службой ННГУ

«Голубая мечта» стоматолога

Впечатлил 2023 г. и необычными достижениями: например, японский стартап Toregem Biopharma, финансируемый Киотским университетом, заявил о планах создать к 2030 г. первое в мире лекарство для выращивания зубов. Препарат уже был успешно испытан на мышах и хорьках. Принцип его действия заключается в нейтрализации в организме белка USAG-1, ограничивающего процесс зубного роста. Предполагается, что в первую очередь лекарство поможет людям, страдающим от полной или частичной нехватки зубов в связи с врожденными факторами, однако в отдаленной перспективе рассматривается и возможность использования препарата как альтернативы зубному протезированию. Испытания инновационного лекарства на людях намечены на 2024 г.

В новом году портал «Научная Россия» продолжит знакомить вас с достижениями отечественных и зарубежных исследователей! С наступающим праздником!

https://scientificrussia.ru/articles/itogi-2023-lekarstvo-ot-vic-vakcinacia-bez-igly-i-vosstanovlenie-nervnyh-kletok

09.01.24 27.12.2023 Научная Россия. Итоги — 2023. Полет на Луну, квантовая нейросеть и мощнейший гамма-всплеск в истории

Физика и исследование космоса на протяжении многих лет находятся в списке самых популярных тем на портале «Научная Россия». В 2023 г. мы публиковали интервью и лекции с ведущими отечественными физиками-теоретиками и экспериментаторами,  писали статьи и новости, следили за запуском космических миссий в прямом эфире, а еще сняли научно-популярный фильм о загадках Стандартной модели фундаментальных взаимодействий. Пришло время подвести итоги и рассказать о самых важных событиях уходящего года!

Космический аппарат «Луна-25». Фото: НПО им. С.А. Лавочкина

Через тернии ― к Луне И ДАЛЕКИМ ПЛАНЕТАМ

В 2023 г. на Луну отправился первый в истории современной России космический аппарат «Луна-25», созданный в НПО им. С.А. Лавочкина. При выходе на предпосадочную орбиту двигатели сработали на 43 с дольше, чем положено, и нештатная ситуация привела к крушению аппарата. По словам научного руководителя первого этапа российской лунной программы академика Л.М. Зеленого, это стало тяжелой потерей и одновременно уроком.

«Разбивались аппараты и у С.П. Королева, и у его преемника Г.Н. Бабакина, но практика делает (космические аппараты. ― Примеч. ред.) совершенными», ― рассказывал в интервью ТК «Россия 24» Лев Матвеевич Зеленый.

Южный полярный кратер Зееман на обратной стороне Луны, сфотографированный космическим аппаратом «Луна-25». Фото: ИКИ РАН

Разработка уникальной аппаратуры для будущих проектов продолжается. Впереди ― космические миссии «Луна-26», «Луна-27» и «Луна-28», старт которых может быть сдвинут из-за проблем, связанных с импортозамещением.

Перед крушением космический аппарат «Луна-25» все-таки успел передать на Землю важную информацию: фотографию одного из самых глубоких кратеров южного полушария Луны — Зеемана, результаты измерений потоков гамма-лучей и нейтронов от лунной поверхности, параметры окололунной космической плазмы и газопылевой экзосферы на окололунной орбите. Космический аппарат также успел зафиксировать удар микрометеорита, принадлежащего к метеорному поясу Персеиды, и зарегистрировал наиболее интенсивные линии химических элементов лунного грунта в энергетическом спектре гамма-лучей.

В августе 2023 г. к Луне также отправилась индийская автоматическая лунная станция «Чандраян-3». 23 августа в 15:33 по московскому времени космический аппарат успешно приземлился на лунную поверхность. Это событие стало историческим по двум причинам: во-первых, до этого дня ни один космический аппарат не совершал успешного прилунения в этой области земного спутника возле южного полюса Луны, а во-вторых, Индия стала четвертой в мире страной, успешно посадившей космический аппарат на Луну после СССР, США и Китая.

2 сентября 2023 г. на околоземную орбиту была выведена автоматическая станция по изучению Солнца Aditya-L1 ― еще один амбициозный проект Индии. Космический аппарат уже передал изображения фотосферы и хромосферы светила с использованием 11 различных фильтров и первые в истории изображения Солнца в виде полного диска в диапазоне длин волн от 200 до 400 нм. Миссия продолжается.

Индийцы празднуют успешную посадку КА «Чандраян-3» в планетарии Неру в Нью-Дели. 23 августа 2023 г.Фото: Manish Swarup / AP Photo

В 2023 г. космический телескоп James Webb показал миру самое детализированное изображение Урана в истории. На снимке также видны кольца и некоторые спутники одной из самых необычных планет Солнечной системы. Фото: NASA, ESA, CSA, STScI

Российские квантовые технологии

В 2023 г. стало известно, что российская квантовая нейросеть провела первые вычисления. Молодые ученые МФТИ первыми в России экспериментально реализовали работающий алгоритм квантового обучения в цепочке сверхпроводящих кубитов. Квантовая нейросеть из нескольких кубитов решила задачи многоклассовой классификации и распознавания рукописных изображений с точностью более 90%. А годом ранее ученые МФТИ также впервые в России продемонстрировали действующий квантовый процессор.

Еще один интересный проект был представлен на международной научной конференции ICQT 2023. Речь идет о квантовой технологии, с помощью которой можно шифровать данные невзламываемыми ключами. По словам специалистов Российского квантового центра, создание защищенных каналов связи на основе квантового распределения ключей позволит гарантированно защитить полезную информацию от компрометации и несанкционированного доступа.

Ученые МГУ им. М.В. Ломоносова и Физического института им. П.Н. Лебедева РАН (ФИАН), в свою очередь, в уходящем году впервые предложили использовать ультрахолодные ионы для создания квантовых мемристоров (электрические сопротивления с эффектом памяти, позволяющие создать аналог биологического синапса ― Примеч. ред.) и проведения квантовых нейроморфных вычислений. Специалисты пришли к выводу, что ионная платформа обладает рядом преимуществ по сравнению с предложенными ранее: она дает возможность создания целой последовательности связанных единичных мемристоров для проведения логических операций. Результаты исследования были опубликованы в журнале Entropy. Авторы работы подчеркнули, что развитие  квантовых мемристоров и их использование в нейроморфных вычислениях на текущий день находятся в зачаточной стадии.

Сотрудники лаборатории искусственных квантовых систем МФТИ Глеб Федоров и Андрей Васенин.Фото: Анастасия Максименко / пресс-служба МФТИ

Человек-гора

Уходящий год запомнился не только новыми технологиями, но и открытием новых мест, связанных с корифеями физической науки в нашей стране. В сентябре на горе Академика Фортова, что в Приэльбрусье, был установлен мемориал в честь выдающегося физика и организатора науки, бывшего президента РАН Владимира Евгеньевича Фортова. К названному в честь академика пику памятную доску подняли группа альпинистов, ученых, меценатов и дочь В.Е. Фортова Светлана Владимировна Фортова. Скоро к мемориалу будет продолжена научная тропа ― маршрут для туристов, посвященный жизни и деятельности ученого.

«Важна не только установка мемориала, но и сам факт, что в честь папы был назван горный пик. Может показаться, что подобное сделать просто, но на деле произошло поистине уникальное событие, потребовавшее больших организационных усилий и поддержки со стороны республики, министерств и многих других организаций. Была решена невероятная по сложности задача. Впервые за 300-летнюю историю академии наук, да и вообще в истории в честь ученого-физика назван столь крупный географический объект на Кавказе. Гора Академика Фортова теперь нанесена на все карты мира», ― рассказывала С.В. Фортова в разговоре с корреспондентом портала «Научная Россия».

Восхождение на пик Фортова. Фото: из личного архива С.В. Фортовой

Восхождение на пик Фортова. Фото: из личного архива С.В. Фортовой

С этого года имя Владимира Евгеньевича Фортова также стала носить площадь в наукограде Черноголовке. В этом городе ученый работал на протяжении многих лет. Академик руководил отделом экстремальных состояний вещества в Институте проблем химической физики РАН и был главным научным сотрудником лаборатории теплофизики плотной плазмы. Не осталась в стороне и Москва. В 2023 г. на Новодевичьем кладбище был открыт памятник В.Е. Фортову. На открытии памятника семья, друзья, соратники ученого произнесли слова в дань уважения и благодарности к человеку, изменившему облик российской науки.

Маленькие частицы и большой космос

Физика элементарных частиц ― один из самых обсуждаемых разделов науки. Удивительный мир кварков, лептонов, глюонов, фотонов, бозонов и других кирпичиков материи и переносчиков взаимодействий на протяжении десятилетий исследуют в ускорительных комплексах по всему миру. Что интересного принес этот год?

На Большом адронном коллайдере при участии российских ученых из Объединенного института ядерных исследований удалось поймать нейтрино. Эти частицы были обнаружены на БАК впервые. Оказалось, что они имеют самую высокую энергию, когда-либо зарегистрированную в лабораторных условиях. Ученые уверены, что это достижение внесет значительный вклад в текущие экспериментальные исследования физики элементарных частиц и проложит путь к дальнейшим открытиям в этой области. Результаты исследований были опубликованы в журнале Physical Review Letters в двух статьях, выпущенных от имени двух коллабораций: FASER и SND@LHC.

Установка элементов детектора для эксперимента FASER на Большом адронном коллайдере. Фото: Maximilien Brice, Julien Ordan / FASER Collaboration

«Действующие детекторы на БАК не предназначены для регистрации нейтрино. Однако созданные специально с этой целью установки FASER и SND@LHC сумели их зарегистрировать на расстоянии около 400 м от точки столкновения протонов БАК. При этом нейтрино от БАК имеют намного более высокую энергию, чем другие нейтрино искусственного происхождения», ― прокомментировал соавтор одной из статей, участник эксперимента FASER, начальник сектора экспериментальной нейтринной физики научно-экспериментального отдела физики элементарных частиц лаборатории ядерных проблем ОИЯИ Юрий Алексеевич Горнушкин.

В 2023 г. новые уникальные результаты в области физики частиц представили также ученые из НИИ ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова. Им удалось получить первые и единственные в мире сечения электророждения пар заряженных пионов (пионы ― самые легкие из сильновзаимодействующих частиц (адронов). — Примеч. ред.) на протонах в области масс нуклонных резонансов до 2,0 ГэВ и в интервале квадратов четырех импульсов виртуальных фотонов Q2 до 5,0 ГэВ2. По словам исследователей, это стало важным шагом на пути к открытию механизмов формирования массы адронов и расширило перспективы доступа к механизмам сильного взаимодействия, определяющим формирование доминирующей части массы видимой материи во Вселенной.

Гамма-всплеск GRB 221009A ― самый мощный в истории наблюдений.Источник изображения и анимации: NASA / DOE / Fermi LAT Collaboration

Не менее увлекательные открытия были сделаны на просторах космоса. Так, в этом году астрономы измерили самый мощный гамма-всплеск в истории науки. Он был зарегистрирован в созвездии Стрельца в октябре 2022 г. Результаты многоволновых наблюдений самого яркого гамма-всплеска, получившего название GRB 221009A, представили ученые Государственного астрономического института им. П.К. Штернберга МГУ им. М.В. Ломоносова совместно с зарубежными коллегами. Основываясь на этих данных, специалисты предложили новую модель джетов (струй плазмы, вырывающихся из центральных областей некоторых  галактик. ― Примеч. ред.) и скорректировали вероятность наблюдения подобного мощного гамма-всплеска в будущем. Гамма-всплеск GRB 221009A был в 70 раз ярче, чем ранее наблюдавшиеся всплески гамма-излучения.

В уходящем году астрономы зафиксировали также крупнейший космический взрыв из когда-либо наблюдавшихся, получили новое изображение Сатурна и его колец, нашли кислород на Венере ― напрямую, а не косвенным путем, как раньше, запечатлели послесвечение от столкновения двух экзопланет и обнаружили самые далекие органические молекулы во Вселенной.

Надеемся, что предстоящий год принесет еще больше интересных открытий!

https://scientificrussia.ru/articles/itogi-2023-polet-na-lunu-kvantovaa-nejroset-i-mosnejsij-gamma-vsplesk-v-istorii

Подкатегории