СМИ о нас

17.06.22 17.06.2022 Зори Табасарана. Учёные продолжат исследования микроволнового астроклимата в Дагестане

Группа ученых во главе с директором Дагестанского федерального исследовательского центра РАН Акаем Муртазаевым продолжит исследования микроволнового астроклимата в Дагестане для оценки перспектив размещения субтерагерцового радиотелескопа. Третья по счету экспедиция в Дагестане проводится в рамках готовящейся академической программы развития субтерагерцовой астрономии.

В понедельник, 20 июня, на двухмесячное дежурство в Дагестан приедет делегация из трех научных сотрудников, в которую входит научный сотрудник Специальной астрофизической обсерватории РАН Андрей Марухно. Помимо установки прибора, они обследуют окрестности площадки горы Маяк около села Гуниб Гунибского района по заказу обсерваторостроителей: оценят размеры и доступность площадок, проблемы создания коммуникаций (доставка, энергетика, связь), а также измерят углы закрытия горизонта.

Ранее учёными из четырёх академических учреждений, подведомственных Минобрнауки России: Дагестанского федерального исследовательского центра РАН, Специальной астрофизической обсерватории РАН (Карачаево-Черкесия), Астрокосмического центра ФИАН им. П. Лебедева (Москва) и Института прикладной физики РАН (Нижний Новгород), были изучены площадки горы Маяк около села Гуниб Гунибского района, горы Шалбуздаг около села Мискинджа Докузпаринского района и в селе Чираг Агульского района.

«Целью этих экспедиций является натуральное изучение микроволнового астроклимата в наиболее перспективных условиях для закрытия инструментов субтерагерцового облучения точек горного Дагестана. В течение 8 лет учёными велись исследования микроволнового астроклимата в западной части Кавказа – в Карачаево-Черкесии и Кабардино-Балкарии, совершена экспедиция на вершину Эльбруса. Результаты исследований показывают, что геофизические и атмосферные условия для установки телескопа у нас лучше», - говорит руководитель экспедиции Акай Муртазаев.

Отмечено, что исследования проводятся в рамках крупного международного проекта и курируются Российской академией наук. В этой связи стоит напомнить о подписанном накануне на полях XXV Международного экономического форума в Санкт-Петербурге рамочном Соглашении о сотрудничестве между Дагестаном и Российской академией наук. Муртазаев уверен, что документ позволит более активно привлекать к реализации проекта республиканские министерства и ведомства, а также инвестиции в развитие научного потенциала Дагестана.

http://zoritabasarana.ru/rubriki/news/nauka/item/21850-uchjonye-prodolzhat-issledovaniya-mikrovolnovogo-astroklimata-v-dagestane

 

30.06.22 30.06.2022 Научная Россия. Вице-президент РАН В. Бондур: вместо импортозамещения - импортонезависимость

На состоявшемся в Петербурге Международном экономическом форуме большое внимание почти на всех площадках уделялось проблеме импортозамещения. А точнее - как снивелировать последствия запрета на поставки в Россию необходимых для промышленного развития товаров. Специальный корреспондент «Интерфакса» Вячеслав Терехов беседовал на эту тему с вице-президентом РАН академиком Валерием Бондуром.

- Проблема импортозамещения не нова. Последние лет десять о ней говорят со многих трибун. Именно в решении проблемы, как заместить все то, что отказывается нам поставлять Запад, видели единственное условие дальнейшего развития страны. Эту тему затронул в своем программном выступлении и президент Российской Федерации Владимир Путин. Однако он предостерег от стремления слепо копировать все запрещенные к ввозу товары и оборудование. Импортозамещение, сказал он, не может стать панацеей, надо отказаться от слепого копирования импорта, самим создавать товары и сервисы мирового стандарта.

Но для того, чтобы, создавая, не копировать, а делать новое, нужна наука, нужно объединение науки и бизнеса. Тогда, вероятно, можно справиться с проблемой импортозамещения.

- Во-первых, сразу хочу отметить, что мы в Российской академии наук предпочитаем термину "импортозамещение" "независимость от импорта". Потому что заместить импортный товар своим, даже таким же, не имеет особого смысла, так как это означает повторять пройденное. К тому же, откровенно говоря, копирование совсем не означает создание равного по качеству и по стоимости товара или изделия.

Где-то - да, нужна точная копия деталей и узлов, которые перестали поставляться из-за санкций. Есть такие товары, которые требуют быстрого и точного повторения. А есть задачи стратегические, которые требуют работы на опережение. Это правило должно действовать в любой отрасли. Например, в автомобилестроении, о котором сейчас модно говорить, или в авиастроении. Это импортонезависимость. Необходимо не только заместить товар, продукцию или комплектующие, но и найти новое решение. Для этого надо переходить на новые технологии, требующие проведения соответствующих научных исследований, и обеспечивать интеграцию науки и реального сектора экономики. Должна быть не только теория, но и практические приложения.

- Примеры такой интеграции уже есть?

- Мы предложили ряд наиболее приоритетных направлений деятельности, и президент РАН академик А.М. Сергеев доложил о них президенту страны В.В. Путину. По указанию президента Российской Федерации РАН совместно с Минпромторгом России предложили шесть первоочередных направлений для обеспечения импортонезависимости, в том числе в таких областях, как медицинское оборудование и фармацевтика (прежде всего создание магнитно-резонансных томографов); химические технологии; биотехнологии; микроэлектроника; лазерная техника; фотоника; станкостроение. Мы провели уже три заседания президиума РАН совместно с Минпромторгом России, на которых заслушали доклады ученых и представителей реальных секторов экономики, наметили планы действий, создаем рабочие группы с участием представителей РАН и научных организаций, организаций реального сектора экономики, а также заинтересованных министерств, ведомств и госкорпораций.

- Это сферы, где намечается интеграция науки и промышленности. А есть примеры, где она уже работает?

- Есть серьезные достижения у нас и с госкорпорациями "Росатом", "Роскосмос", "Ростех", ПАО "РЖД" и другими крупными компаниями.

Например, в рамках соглашения между Российской академией наук и государственной корпорацией по атомной энергии "Росатом" РАН и институты, функционирующие под ее научно-методическим руководством, участвуют в работах, результаты которых будут способствовать успешной реализации Комплексной программы "Развитие техники, технологий и научных исследований в области использования атомной энергии в Российской Федерации". В том числе это относится к реализации проекта "Прорыв" для достижения нового качества ядерной энергетики путем разработки и запуска промышленных установок замкнутого ядерного топливного цикла на базе реакторов на быстрых нейтронах. В этой программе импортозамещение не требуется, так как в ней будут использованы самые передовые российские технологии.

- Это отрасли, где все-таки традиционно мы были крепкими. Но есть такие как микроэлектроника, а за последние тридцать лет - и самолетостроение. Там отставание полное.

- Да, микроэлектроника - это сложный вопрос, потому что для ее развития нужно применять новые технологии. Наши предприятия пока обеспечивают производство электронной компонентной базы, которая, как правило, уступает зарубежным образцам.

- Это сложно, потому что нужно полностью промышленность изменять?

- Нет, не полностью, но многое нужно менять. В свое время у нас объявляли, что мы по микроэлектронике уже всех опередили. На самом деле все это было не так.

- Тогда была шутка: наши микрочипы самые большие в мире.

- Да, было такое.

- Затронем теперь самолетостроение. Фактически, мы потеряли отечественную авиапромышленность, которая была развита в Советском Союзе. Все с девяностых годов закупали, а то, что делали, вернее, собирали, было из импортных материалов.

- Сейчас самолетостроение в нашей стране интенсивно развивается. В настоящее время уже эксплуатируется ряд отечественных пассажирских самолетов. При этом такие лайнеры, как Sukhoi Superjet New, МС-21 и Ту-214, полностью независимы от иностранных комплектующих.

Одной из наиболее острых проблем было обеспечение отечественного производства композитных материалов, необходимых для изготовления крыла самолета МС-21. Но благодаря тесному взаимодействию науки и промышленности эта проблема была успешно решена.

- Что сейчас практически делается в РАН для обеспечения импортонезависимости? Приведите несколько примеров.

- Например, как я уже говорил, в соответствии с поручением руководства страны Минпромторгом России совместно с Российской академией наук в оперативном порядке были определены шесть первоочередных критически важных направлений научно-технологической деятельности для обеспечения импортонезависимости, в том числе:

- создание российского производства магнитно-резонансных томографов (МРТ) для высокоточной медицинской диагностики;

- развитие химического комплекса;

- отечественная микроэлектроника;

- промышленные биотехнологии;

- лазерные и оптические технологии;

- отечественное станкостроение.

Для координации работ в этих направлениях сформированы экспертные группы с участием представителей Российской академии наук, научных организаций, организаций реального сектора экономики, а также заинтересованных представителей федеральных органов исполнительной власти и госкорпораций.

В настоящее время уже начаты совместные работы над этими приоритетными проектами.

- У нас очень остро стоит вопрос с медицинской техникой. Я недавно делал МРТ, и лет 15–20 тому назад была та же труба, в которой душно лежать, так и до сих пор. Она импортная. Но хорошо, что эта есть!

- МРТ! Одна из наших групп занимается проблемой медицинского оборудования и, в частности, созданием отечественных МРТ. В работах по созданию магнитно-резонансных томографов в интересах высокоточной медицины участвуют Физический институт им. П.Н. Лебедева РАН (ФИАН), АО "Русатом Хэлскеа" (входит в ГК "Росатом"), ООО "Антей-Мед" (входит в ОАО "Алмаз-Антей").

Наш Физический институт имени Лебедева РАН сделал свой экспериментальный образец МРТ, который соответствует мировому уровню. Если нам не будут поставлять это важное медицинское оборудование, то, значит, необходимо организовать его серийное производство. Но сначала требуется довести его экспериментальную версию, как говорят, до промышленного образца. То есть теоретически мы можем этот аппарат сделать, но это требует определенного времени.

- А кто участвует в работах по другим названным вами направлениям?

- Для развития химического комплекса - Институт нефтехимического синтеза им. А.В. Топчиева РАН, ФИЦ "Институт катализа им. Г.К. Борескова" Сибирского отделения РАН, ООО "СИБУР";

– в области отечественной микроэлектроники - Институт нанотехнологий микроэлектроники РАН, Институт проблем химической физики РАН, Институт проблем технологии микроэлектроники РАН, Физико-технологический институт им. К.А. Валиева РАН, АО "НИИ молекулярной электроники", АО "Научно-исследовательский институт точного машиностроения", АО "Элемент";

– по промышленным биотехнологиям - ФИЦ "Биотехнологии" РАН, ООО ПО "Сиббиофарм", АО "ЭФКО";

– по лазерным и оптическим технологиям - ФИЦ "Институт общей физики им. А.М. Прохорова РАН", ФИЦ "Институт прикладной физики РАН", Институт лазерной физики Сибирского отделения РАН, Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики, ООО "ТД "Вартон";

– в области отечественного станкостроения - Институт физики прочности и материаловедения Сибирского отделения РАН, Институт машиноведения им. А.А. Благонравова РАН, Институт проблем механики им. А.Ю. Ишлинского РАН, Московский государственный технологический университет "СТАНКИН", АО "Наука и инновации" (входит в ГК "Росатом"), НПК "ЦАГИ" им. Н.Е. Жуковского.

- А есть еще примеры?

- Еще один пример работы Российской академии наук как площадки для координации взаимодействия науки и организаций реального сектора экономики - это реализация соглашения между Российской академией наук и ПАО "КАМАЗ", в рамках которого предусмотрены работы в интересах развития передовых цифровых, интеллектуальных производственных технологий, роботизированных систем, применения новых материалов и способов конструирования, внедрения систем обработки больших объемов данных, машинного обучения и искусственного интеллекта в автомобилестроении, а также развития технологий водородной энергетики в автомобилестроении.

В настоящее время уже созданы четыре рабочие группы по направлениям "Электрические и водородные транспортные средства", "Передовые материалы", "Автономные транспортные средства и электроника. Системы навигации. Интеллектуальные системы контроля состояния водителя", "Подготовка персонала и сотрудничество с организациями высшего профессионального образования". В состав этих рабочих групп входят как главные конструкторы и ведущие специалисты ПАО "КАМАЗ", так и ведущие ученые научных организаций, а также профильных вузов. Формируются технические задания на перспективные направления проведения совместных работ.

- На этом автогиганте есть примеры решения проблемы импортозамещения или, как вы говорите, импортонезависимости? Конкретнее: как там заменили импортные части?

- У "КАМАЗа" компаньоном был "Мерседес", а конкретнее - компания "Даймлер Тракс". В связи с этим в условиях широкомасштабных санкций была угроза, что "КАМАЗ" может остаться без ряда комплектующих, в том числе и лонжеронов для автомобильных рам. Теперь "КАМАЗ" освоил производство своих. Немцы измеряли специальными оптическими приборами, как деформируются наши отечественные лонжероны, и сравнили эти показатели с мерседесовскими. Измерили. Оказалось, что наш, сделанный из отечественного материала, под нагрузками деформируется меньше.

Но "КАМАЗ" был обеспокоен еще и тем, что у них поддонов пластиковых не было: производство новых поддонов было развернуто на соседнем предприятии. Так они появились на "КАМАЗе". Вопросов ни к ним, ни к другим совместно разработанным и созданным деталям нет.

Качество автомобилей "КАМАЗ" очень высокое. Об этом свидетельствуют регулярные победы на знаменитых международных авторалли "Париж-Дакар".

- Мы сильны в энергетике. Но эта сила опирается на уходящие источники энергии, а не на возобновляемые. А жизнь нас не толкает ускорить переход к зеленой экономике?

- В дальней перспективе, безусловно, так. Но, как показала жизнь, особенно в ситуации, сложившейся после 24 февраля 2022 года, возможности углеводородной энергетики далеко не исчерпаны. У нашей страны в этом есть существенные преимущества. Многие, даже иностранные ученые и инженерно-технические работники говорят: зачем вы торопитесь переходить на возобновляемую энергетику, когда у вас есть природный газ. Сегодня это самый экологически чистый источник энергии. Вы его используйте более широко.

- А как с атомной энергетикой?

- Вклад атомной энергетики в энергетический баланс России составляет 20%. А разве атомная энергетика не экологически чистая? Ее даже недружественные страны признавали и признают сейчас как зеленую энергетику.

- Но атомная энергетика все-таки опасна. Чернобыль доказал, и не только Чернобыль.

- Тогда применялись старые технологии, а сейчас используются другие, безопасные.

Наша страна стремится достичь нового качества ядерной энергетики путем разработки и запуска промышленных установок замкнутого ядерного цикла на базе реакторов на быстрых нейтронах (проект "Прорыв"). Например, в рамках этого проекта под научным руководством Института высокотемпературной электрохимии Уральского отделения РАН производятся разработка и создание технологии пирохимической переработки отработавшего ядерного топлива реакторов на быстрых нейтронах, в которых принимают участие более десяти предприятий реального сектора экономики, являющиеся лидерами в своей области деятельности.

Кроме того, в настоящее время госкорпорацией "Росатом" с привлечением ученых разрабатывается проект "Зеленый квадрат", предусматривающий объединение в единый комплекс четырех низкоуглеродных источников энергии, где атомная энергия и гидроэнергетика обеспечивают базовую нагрузку, а ветровая и солнечная – пиковую. В этом проекте на РАН ложится важная задача, связанная с разработкой технологического обоснования включения ядерной энергетики в этот комплекс в качестве полноценного экологического звена.

- Расскажите о некоторых других направлениях совместной работы с госкорпорацией "Росатом".

- Большая совместная работа госкорпорации "Росатом" с РАН и научными организациями, функционирующими под ее научно-методическим руководством, проводится по формированию и подготовке к запуску комплексных научно-технических программ и проектов полного инновационного цикла (далее - КНТП). Это относится, например, к таким областям, как создание новых композиционных материалов, а также разработка робототехнических технологий вывода из эксплуатации объектов использования атомной энергии для снижения экологического ущерба и минимизации использования человека в опасных зонах.

В рамках соглашения о сотрудничестве между Сибирским отделением РАН и РФЯЦ-ВНИИЭФ (Госкорпорация "Росатом") намечены 11 основных направлений сотрудничества, включая разработку крупных ускорительных комплексов, в том числе синхротронов, работы в области управляемого термоядерного синтеза, ядерной и лазерной физики, фотоники и других направлений.

- А что в области медицины?

- Ярким примером взаимодействия академической науки и предприятий реального сектора экономики России является разработка отечественной вакцины против коронавирусной инфекции COVID-19, вызываемой коронавирусом SARS-CoV-2. В Национальном исследовательском центре эпидемиологии и микробиологии имени Н.Ф. Гамалеи Минздрава России (директор - академик РАН Гинцбург А.Л.) за короткое время создали эффективные вакцины против COVID-19 (прежде всего, Спутник V). Было освоено ее промышленное производство как на собственной базе, так и на базе АО "ГЕНЕРИУМ", АО "БИОФАРМ", ЗАО "БИОКАД" и других предприятиях.

Еще одна российская однокомпонентная инактивированная вакцина против COVID-19 разработана в Федеральном научном центре исследований и разработки иммунобиологических препаратов имени М.П. Чумакова РАН. Промышленное производство вакцины "КовиВак" наладила компания "Нанолек" на заводе, расположенном в Кирове.

Для оптимизации питания детского и взрослого населения России, борьбы с ожирением и ликвидации дефицита микронутриентов Российской академией наук создан консорциум "Здоровьесбережение, демография, питание". В состав Консорциума входят 12 ведущих научных учреждений, функционирующих под научно-методическим руководством РАН, а также 35 индустриальных партнеров - крупных производителей продовольственного сырья и пищевой продукции. Координатором работ является "ФИЦ питания и биотехнологии". За менее чем один год работы Консорциума общий рост производства отечественных обогащенных и специализированных продуктов составил более 2%, в настоящее время находятся в завершающей стадии разработки или на регистрации более 30 новых продуктов, реализуются образовательные программы в области здорового питания для специалистов и населения.

- Наш ответ на новые вызовы!

- Российская академия наук активно взаимодействует с реальным сектором экономики. РАН и ее научные организации в общей сложности заключили 23 соглашения о сотрудничестве. Десятки институтов РАН сотрудничают с госкорпорацией "Росатом", госкорпорацией "Роскосмос", госкорпорацией "Ростех", ПАО "РЖД", "Газпромом" и многими другими объединениями. Напомню, Минпромторг России совместно с РАН определил первоочередные критически важные направления научно-технологической деятельности для обеспечения импортонезависимости.

Объединение усилий ученых и производственников в сфере импортонезависимости или замещения касаются и такого важного направления, как пищевая промышленность. Это - обеспечение безопасности биотехнологий, производство отечественных пищевых продуктов.

Все эти факты можно объединить одним девизом: это наш ответ на новые вызовы в условиях технологической изоляции.

Источник фото: aerocosmos.info
Разместила Ирина Усик
Источник: www.interfax.ru

https://scientificrussia.ru/articles/vice-prezident-ran-v-bondur-vmesto-importozamesenia-importonezavisimost-interfaks-vaceslav-terehov

30.06.22 30.06.2022 Научная Россия. Член-корреспондент РАН Андрей Наумов: «Спектроскопия — это зрение современной науки»

Проникнуть в тайны нано- и микромира не менее сложно, важно и интересно, чем добраться до далеких галактик и узнать, как формировалась Вселенная. Отдельные молекулы, атомы и кванты — тоже неведомый и сложно устроенный мир. Об этом рассказывает член-корреспондент РАН Андрей Витальевич Наумов, руководитель Троицкого обособленного подразделения ФИАН им. П.Н. Лебедева, заведующий отделом спектроскопии конденсированных сред Института спектроскопии РАН, заведующий кафедрой теоретической физики им. Э.В. Шпольского Московского педагогического государственного университета.

— Андрей Витальевич, что это за научная область — спектроскопия одиночных молекул? Для чего она нужна?

— Основное направление работы, которую ведет наша группа, связано с оптической спектроскопией и микроскопией одиночных квантовых излучателей. Так сложилось, что это направление стало бурно развиваться на рубеже 1980–1990-х гг., когда коллегам удалось зарегистрировать свечение одной-единственной органической молекулы в твердой прозрачной среде.

Когда говорят о молекулах, сразу вспоминают либо молекулы воды H2O, либо молекулы соли NaCl. Мы же будем говорить о больших органических молекулах, которые могут состоять из нескольких бензольных колец, протяженных молекулах размером вплоть до нескольких нанометров. Возможность детектирования свечения таких молекул оказалась чрезвычайно востребована сразу во многих направлениях науки.

Но прежде чем перейти к одиночным квантовым излучателям, к одиночным молекулам, нужно сказать несколько слов о спектроскопии. Спектроскопия — это наука о взаимодействии электромагнитного излучения с веществом. Или, когда мы обсуждаем корпускулярную природу света, то мы говорим о взаимодействии фотонов с веществом. Это взаимодействие можно рассматривать на уровне объемного вещества (кристаллы, жидкости, газы), а можно и на уровне единичной молекулы, что чрезвычайно важно для понимания фундаментальных основ того, как именно происходит это взаимодействие.

— Почему это крайне востребовано?

— Я люблю говорить, что спектроскопия — зрение современной науки. Естественные науки (химия, биология, медицина, нанотехнологии, материаловедение, физика), используя спектроскопические методики, получают огромное количество информации о процессах, происходящих вокруг нас. Точно так же физиологи обычно говорят, что больше 80% всей информации об окружающем мире нам поступает через органы зрения и лишь 20% — через остальные органы чувств. Понятно почему. Например, если нам нужно изучать далекий космос, у нас нет ни одного другого способа кроме анализа излучения, которое приходит к нам в видимом ультрафиолетовом или инфракрасном диапазонах спектра. Интересны также и другие области — рентгеновский диапазон, радиоволны. Мы можем зарегистрировать это излучение и затем сказать, что на удалении миллион световых лет от нас находится какая-то звезда или галактика, которая таким образом светит. И, проанализировав это излучение, мы можем сказать, как появилось это образование, как оно изменялось, каким образом возникла Вселенная и как она развивалась в течение длительного времени.

С другой стороны, если нам нужно посмотреть, что происходит внутри малых объектов, например молекулы, или каким образом устроен атом, мы точно так же должны провести определенные наблюдения. Но у нас нет такого градусника или другого измерительного инструмента, чтобы заглянуть внутрь отдельного кирпичика, из которых сложен окружающий мир. Мы начинаем смотреть, как эти маленькие объекты взаимодействуют со светом, и по отклику можем судить о том, что происходит внутри них.

— Что это значит — по отклику?

— Мы можем изучать, как поглощается излучение, можем говорить о рассеянии, о процессах переизлучения, об отражении… Анализируя эти процессы, мы можем судить о том, что же происходит в материале. Это и есть спектроскопия.

— Иначе говоря, микромир мы можем изучать только путем воздействия на него света?

— Да. Хотя, конечно, говоря «оптическая спектроскопия», мы уходим в очень узкий видимый диапазон спектра, но реально нас интересуют все диапазоны — ультрафиолет, инфракрасный, рентген, гамма-излучение и т.д. Если идем в другую сторону, тоже очень популярны методики терагерцевые, микроволновые, радиоизлучение. В этих диапазонах можно изучать массу процессов, и это востребовано практически во всех направлениях науки. В частности, это необходимо интенсивно развивающимся наукам о жизни, чтобы посмотреть, как функционирует живая клетка, разработать новые методы диагностики, аналитические методики раннего обнаружения заболеваний или способы промышленного применения. Это методы диагностики экстремальных состояний вещества, каких-то горячих зон. Например, сейчас ведется работа по налаживанию управляемого термоядерного синтеза. Там есть ультрагорячая плазма. Каким образом измерить температуру в этом плазменном жгуте, ведь мы не можем поместить туда термометр?

Значит, нужно поставить рядом спектрометр и посмотреть, как эта плазма излучает, и, видя зависимость интенсивности излучения от длины волны, предсказать по спектральным линиям, что происходит в этой плазме, как мы ее разогреваем и удерживаем в пространстве.

— Каким образом вы предсказываете спектр?

— Есть две спектроскопические задачи — прямая и обратная. В одном случае мы можем предсказать спектр, зная, как вещество устроено на элементарном уровне. В другом случае, если мы измеряем спектр, нам нужно расшифровать его и рассказать, как устроено то или иное вещество. Отсюда так или иначе проистекают все фундаментальные исследования. В частности, спектроскопия отдельных частиц — молекул, из которых состоит материя.

— Вы регистрируете одиночные молекулы. Насколько это сложная задача?

— Задача непростая. Оказывается, увидеть и зарегистрировать их чрезвычайно трудно. Конечно же, есть методики, которые позволяют визуализировать одну-единственную молекулу и опуститься даже на уровень одиночных атомов. Методы электронной микроскопии позволяют рассмотреть, как в кристалле упакованы отдельные атомы. Сейчас есть очень важное направление — микроскопия с синхротронными источниками. Это отдельная область, которая тоже связана со спектроскопией.

Но в нашем случае задачей было увидеть одну молекулу более или менее простыми оптическими способами. Даже не саму молекулу рассмотреть, а то, как она излучает свет. Эта история довольно давно началась с того, что сразу несколько научных школ во всем мире стали исследовать явление люминесценции — излучение света, избыточное над тепловым. Советская научная школа в этом преуспела, и наша отечественная наука в этом плане продолжает оставаться одной из ведущих в мире.

— Кто основал эту школу?

— Это научная школа президента Академии наук СССР С.И. Вавилова, на тот момент директора Физического института им. П.Н. Лебедева. И одно из самых больших подразделений в ФИАН в те времена как раз и занималось исследованием эффекта люминесценции. Ее иногда называют «холодным светом», чтобы отличить от теплового излучения. Хорошо известно, например, что наше Солнце светит в достаточно широком диапазоне спектра, потому что оно разогрето за счет происходящих там термоядерных реакций, мы видим так называемое тепловое излучение. В связи с тем, что температура материала очень высокая, атомы переходят в возбужденное состояние и, переходя обратно, излучают фотоны с разными энергиями, на разных длинах волн. Но, оказывается, материал можно заставить светиться в видимом диапазоне спектра и при обычной, например комнатной, температуре.

— Каким образом?

— Для этого нужно подвести к материалу дополнительную энергию. Сделать это можно по-разному. Например, освещая этот материал с помощью дополнительного источника света — лампочки или лазера. И тогда у нас материал может начать светиться дополнительно к тому тепловому излучению, которое соответствует температуре материала. Это явление называют фотолюминесценцией. Если мы подводим энергию, помещая материал в электрическое поле, мы будем наблюдать электролюминесценцию.

Есть более экзотические виды люминесценции — например, биолюминесценция. Но мы сейчас на них останавливаться не будем. Нас интересует фотолюминесценция. Оказывается, освещая тот или иной материал с помощью специально подобранных источников излучения, мы можем регистрировать люминесценцию. Но расшифровать по зарегистрированным спектрам структуру и динамику сложных органических молекул оказалось чрезвычайно сложно. Спектры долгое время получались бесструктурными.

— Но, насколько я знаю, этот барьер однажды был преодолен?

— В начале 1950-х гг. в лаборатории Э.В. Шпольского на кафедре теоретической физики МГПИ им. В.И. Ленина было показано: если такие молекулы красителей заморозить в специально подобранных растворах (их стали называть матрицами Шпольского, а сам эффект — эффектом Шпольского), то эти широкие бесструктурные спектры можно чрезвычайно сузить, получить квазилинейчатые спектры и начать их расшифровывать примерно так же, как это происходило с атомными спектрами. К тому времени атомная спектроскопия уже была очень хорошо развита, люди научились расшифровывать энергетическую структуру уровней, наблюдая спектры излучения и поглощения атомов. Так в этих квазилинейчатых спектрах оказалось возможным наблюдать структуру уровней молекул.

В схеме уровней энергии молекул можно выделить несколько степеней свободы. Во-первых, это электронные уровни, определяющиеся энергией электронов в молекуле. Во-вторых, можно наблюдать колебательные уровни. Когда молекула состоит из нескольких атомов, у них есть возможность двигаться относительно друг друга — в молекуле есть внутренние колебания. И энергия этих колебаний будет определять уровни колебательных состояний в молекуле.

Но при этом есть еще взаимодействие с окружающим материалом, в случае твердого тела мы говорим о взаимодействии с матрицей. Каждая молекула находится в слегка отличающихся условиях, и у каждой молекулы немного разные энергии электронных уровней. В итоге, когда мы следим за большим ансамблем примесных молекул, получаем широкий бесструктурный спектр. Оказалось, что в матрицах Шпольского молекулы внедряются более или менее одинаковым образом и, более того, можно возбуждать чисто электронно-колебательные переходы без участия фононов — коллективных колебаний атомов матрицы.

Этим переходам соответствуют узкие линии, которые получили название бесфононных спектральных линий. При этом зарегистрировать их можно селективно, то есть наблюдать свечение не от всего огромного количества молекул, а только малого ансамбля с близкими частотами переходов.

Ученик Э.В. Шпольского Р.И. Персонов, который, окончив МГПИ им. В.И. Ленина и защитив там кандидатскую диссертацию, в конце 1960-х гг. пришел во вновь создаваемый Институт спектроскопии АН СССР в Троицке, возглавил там лабораторию электронных спектров молекул, которая продолжила этим заниматься.

— А вы его ученик?

— Да, он был научным консультантом моей кандидатской диссертации и руководителем лаборатории, в которой выполнялась работа. Если вспомнить историю физики, в 1960-е гг. было еще одно знаковое событие, связанное с советскими научными школами: лазерные источники света. Лазеры, которые впервые были разработаны, продуманы, изготовлены в Физическом институте им. П.Н. Лебедева.

Монохроматические источники света стали использовать в Институте спектроскопии РАН, в лаборатории Р.И. Персонова для того, чтобы возбуждать свечение тех самых органических молекул в твердых матрицах. Оказалось, что в макроскопическом объеме, где находятся многие миллиарды молекул, каждая из которых пребывает немножко в разных условиях, можно с помощью монохроматического источника света селективно возбудить только очень узкий ансамбль молекул, частоты переходов которых фактически находятся в резонансе с частотой возбуждающего лазера. То есть в пространстве селективно выбираются только определенные молекулы. Это можно сравнить с хором, когда люди поют на разных частотах, а мы выбираем только тех людей, которые поют в унисон.

— Как интересно.

— Итак, мы получаем отклик только от ансамбля молекул, резонансных с лазерным источником света. Оказалось, что при низких температурах это можно делать практически в любом материале, не только в матрицах Шпольского, но и, например, в полимерах. С этого момента, а это был 1972 г., эффект, который наблюдала группа Р.И. Персонова, получил название laer fluorescence line narrowing «лазерное сужение линий люминесценции» (laer fluorescence line narrowing). В иностранной литературе его иногда называют эффектом Персонова.

А спустя короткий промежуток времени удалось реализовать и обратную технику: не только наблюдать узкие линии в спектре излучения, но еще и «выжечь» узкий провал — «дырку» в спектре поглощения, соответствующий только определенным резонансным молекулам. Направление получило название «спектроскопия выжигания провалов» (hole burning spectroscopy). Эти два метода дали старт популярному научному направлению селективной лазерной спектроскопии органических молекул в твердых матрицах. Коллектив Р.И. Персонова был отмечен Государственной премией СССР, а во всем мире бурно начали развиваться лаборатории, использующие этот метод для изучения сложных органических молекул оптическими методами.

— Но на этом развитие данных методов не остановилось?

— Оно продолжилось. Теоретически расчеты показывали, что даже одна молекула будет излучать довольно большое количество фотонов, достаточное для того, чтобы их можно было зарегистрировать с помощью имевшихся в те времена детекторов — фотоэлектронных умножителей. В этой научной гонке участвовали несколько групп, и первыми зарегистрировали спектр поглощения молекулы пентацена в прозрачном кристалле паратерфенила американский ученый Уильям Мернер с его сотрудником Лотаром Кадором, работавшие в то время в IBM. А буквально через месяц-другой коллеги из Франции (группа Мишеля Оррита) зарегистрировали люминесценцию одиночной молекулы и убедительно доказали, что это действительно свечение одной молекулы. Следом в данную область пришли сотни лабораторий во всем мире.

Попутно выяснилось, что свечение этой одиночной молекулы, оказывается, чрезвычайно чувствительно к параметрам локального окружения на уровне нескольких нанометров. И мы фактически в прозрачном материале можем посадить метку — люминесцентный зонд, который будет передавать информацию о том, что же происходит в его локальной окрестности, в виде электромагнитного излучения — люминесценции.

— Такой наношпион?

— Да, который находится внутри материала и передает нам в виде фотонов информацию о том, что происходит в его локальном нанометровом окружении. Всем сразу стало понятно, что это фактически единственный уникальный инструмент для того, чтобы исследовать не только структуру материала, но еще и динамику. Например, впервые удалось увидеть, что если рядом с одиночной молекулой происходит туннелирование частицы сквозь потенциальный барьер, то такой переход немедленно приведет к прыжку спектральной линии. Таким образом, у нас появилась возможность исследовать квантово-механическое явление, которое до этого изучалось теоретически, подтверждалось только косвенными экспериментальными данными.

Ученые стали активно использовать эти зондовые методики. Во второй половине 1990-х гг. к этому направлению подключилась и наша группа. Вместе с Р.И. Персоновым и моим непосредственным научным руководителем Ю.Г. Вайнером мы работали с научной группой Лотара Кадора на кафедре профессора Юргена Келера в Байройтском университете в Германии, где была построена специальная экспериментальная установка. Это были оригинальные, по ряду направлений пионерские работы по исследованию низкотемпературной динамики стекол и полимеров по спектрам одиночных примесных молекул, которые достаточно хорошо прозвучали и на международном уровне.

В тонкой пленке мы наблюдали за свечением отдельных молекул, анализировали временное поведение, а также зависимости спектров от температуры, от приложенных внешних полей. На основе этих экспериментов нам удалось прояснить природу движений отдельных атомов и молекул в сложных неупорядоченных твердотельных средах — полимерах, замороженных жидкостях, стеклах, молекулярных кристаллах.

— Почему это важно изучать?

— Потому что характеристики вещества зависят не только от структуры, то есть от того, как атомы «упакованы» в материале. Дело в том, что многие функциональные характеристики определяются еще и тем, как атомы и молекулы двигаются. А методов для изучения этих движений на микроскопическом уровне не так много. В нашем методе в качестве «сенсоров» внутренней динамики выступают отдельные люминесцирующие молекулы, что и позволяет изучать, в частности, полимерные среды.

Полимеры активно используются в самых разных областях человеческой жизни, и важно понимать, что собой представляет внутренняя динамика, каким образом двигаются полимерные цепи. А у нас появился инструмент, чтобы видеть это на уровне таких фрагментов нанометрового размера.

Дальше — больше. Для того чтобы получить информацию о макроскопическом объеме образца, нужно последить за многими молекулами-зондами, то есть взять фактически тот самый «хор» и каждому исполнителю поднести микрофон, послушать, что он исполняет.

— И выбрать только тех, которые нам нравятся?

— Да, а дальше мы можем сказать, что происходит с макроскопическим объектом в целом. К середине 2000-х гг. появились такие инструменты — многоканальные детекторы, использующие приборы с зарядовой связью, ПЗС-камеры. Эти камеры к тому времени уже научились делать настолько чувствительными и эффективными, чтобы можно было зарегистрировать свечение одной-единственной молекулы. И мы уже не просто регистрируем свечение одной молекулы, а получаем ее люминесцентное изображение в оптическом люминесцентном микроскопе.

И вот тут получился замечательный фокус, состоящий в том, что обычный микроскоп и его разрешение ограничены так называемым дифракционным пределом Аббе. В обычный микроскоп мы с вами сможем рассмотреть луковую клетку, как это делается в школе, но, например, для того чтобы посмотреть на отдельные части этой клетки, на ядро, на то, что происходит внутри ядра, или на синапсы в головном мозге, пространственного разрешения оптического микроскопа не хватит.

Когда мы смотрим на свечение одной-единственной молекулы, мы можем решить компьютерную задачу восстановления пространственных координат на основе математической задачки о дифракции на оптических элементах микроскопа. Поскольку размер излучателя — молекулы в сотни раз меньше длины волны, при решении обратной задачи точность восстановления координат будет уже определяться только стабильностью самого микроскопа и общим количеством собранных фотонов.

Это примерно то же самое, как когда вы летите на самолете, видите фонари, которые светятся в ночном городе, и если они светят все разом, вы видите большое светящееся пятно. А теперь представьте, что каждый фонарь вы зарегистрировали отдельно. Вы видите на своем фотоаппарате одно пятнышко, можете определить его центр с очень высокой точностью и получить вместо большого пятна набор точек. Когда вы прорисуете на компьютере эти точки, вы обнаружите, что зарегистрировали шоссе, улицы, дворы. Вы как бы помечаете этими зондами всю структуру образца.

— Этот метод сейчас используется?

— Да, эта история привела к появлению направления флуоресцентной наноскопии, то есть микроскопии сверхвысокого пространственного разрешения. Мы подключились к этой тематике примерно в те времена, когда развернулись основные баталии научных коллективов, отдельные из которых затем получили Нобелевские премии.

Во второй половине 2000-х гг. мы с нашим молодым ученым А.А. Горшелевым сделали аналогичную вещь, но уже не для биологических объектов при комнатной температуре, а все в тех же самых неупорядоченных твердых средах при криогенной температуре. Эта работа стала пионерской, и не так много групп в мире смогли ее воспроизвести.

— Это то, за что вы скоро получите Нобелевскую премию?

— Я бы так далеко не забегал, эта область очень динамично развивается, налицо серьезная конкуренция. Но в каком-то смысле мы решили старинную задачу астрономов, которые хотели пересчитать все звезды на небе. Очень похожая, кстати, задача. Более того, методы распознавания изображений в современной астрофизике и в нашей микроскопии одиночных молекул одинаковы.

Сейчас ведутся примечательные работы с помощью нашего телескопа «Спектр-РГ». Там стоит задача распознавания изображений. Им приходится распознавать изображение точно так же, только они следят за звездами, а мы — за одиночными молекулами и пересчитываем все молекулы, которые попали в поле зрения.

— И сколько же насчитали молекул?

— В нашей работе 2009 г. в тонкой пленке образца с размерами 50 × 50 мкм мы зарегистрировали порядка 300 тыс. эффективно светящихся молекул. Мы их все по очереди зарегистрировали, нашли пространственные координаты, построили карту распределений и таким образом смогли сделать микроскопию сверхвысокого пространственного разрешения с помощью молекул-зондов. Мы визуализировали трещины с разрешением, которое уже не ограничено дифракционным пределом. Это разрешение составило порядка нескольких нанометров.

Но что очень важно, и это нас отличало от всех остальных групп, мы не просто зарегистрировали координату, но для каждой молекулы измерили спектр. И, таким образом, у нас получилась не просто микроскопия или наноскопия, а многопараметрическая наноскопия. Для каждой молекулы, для каждого зонда мы еще зарегистрировали спектр — и микроскопия стала многоцветовой. Это дало фантастические результаты. У нас появился инструмент зондирования материальных характеристик со сверхвысоким пространственным разрешением.

— Интересно, а что сложнее — познавать тайны макромира или микромира, как вам кажется?

— Я думаю, и тут и там есть свои сложности и очень много интересных вещей. Но при этом очень много общего.

— Обывателю понятно, что астрономы рассматривают звезды, стараются увидеть как можно дальше и узнать как можно больше. Но мало кому приходит в голову, что есть ученые, которые занимаются в чем-то сходными задачами, но на микроуровне, и это не менее занимательно, не менее сложно и не менее важно.

— Да, это так. Например, знаменитый астроном Уильям Хершель изучал Вселенную следующим образом: он зарисовывал положение звезд, которые видит на небе, построил карту распределения звезд — и это была одна из первых моделей возникновения нашей Вселенной. А С.И. Вавилов в 1920-е гг. в своей знаменитой книге о природе света «Глаз и Солнце» писал, что квантовая теория не сможет получить своего экспериментального подтверждения до того момента, пока мы не сможем сказать, какое количество частиц светит в данный момент времени. Квантовую теорию мы сможем подтвердить только в тот момент времени, когда будем знать, сколько молекул светит. Так вот сейчас мы научились это делать.

Если вернуться к многоцветовой флуоресцентной наноскопии, то это направление сейчас развивает наша научная группа. Наш большой коллектив сейчас распределен сразу между многими организациями — это Институт спектроскопии РАН, Московский педагогический государственный университет, Физический институт им. П.Н. Лебедева. Вместе мы пытаемся получать разную информацию. Одно из направлений нам подсказали коллеги из Физико-технического института им. А.Ф. Иоффе.

С.П. Феофилов (к сожалению, недавно ушедший от нас), очень известный ученый, в 1990-е гг. показал, что параметры люминесценции таких зондовых молекул зависят от материальных характеристик среды. Время жизни возбужденного состояния зависит, в частности, от диэлектрической проницаемости, магнитной восприимчивости, показателя преломления этой среды. Это скорость, с которой у нас фотоны люминесценции высвечиваются зондовыми молекулами.

Мы попытались реализовать эту идею уже на уровне одиночных излучателей. Серьезный теоретический задел в этом направлении был сделан нашим сотрудником, теоретиком М.Г. Гладушем. Нам удалось связать спектральные свойства молекул-зондов с материальными характеристиками среды. Мы смогли картировать значение показателя преломления в тонкой пленке в разных участках этого образца.

— Какие результаты удалось получить?

— Мы получили довольно интересные результаты, которые показали, что материальные характеристики, в частности диэлектрическая проницаемость среды, могут очень сильно флуктуировать в разных точках нашего образца, который макроскопически может быть однороден. Таким образом, мы предлагаем новую инструментальную методику для нанотехнологов. Этот инструмент позволяет смотреть на субмикрометровом уровне, как устроены сложные материалы — не только полимеры и стекла, но и разнообразные нанокомпозиты, многослойные покрытия, гибридные материалы.

— А что за квантовые точки, которыми вы тоже занимаетесь?

— Оказывается, есть объекты, очень похожие на молекулы, которые тоже люминесцируют, но имеют совершенно другую химическую природу. В частности, так называемые полупроводниковые квантовые точки — направление, в котором наши коллеги, советские и российские ученые, тоже преуспели. Если мы берем полупроводник, начинаем уменьшать его и доходим до размеров, где начинают проявляться так называемые квантово-размерные эффекты, у нас появляется структура уровней нанокристаллов, очень похожая на структуру уровней отдельных атомов. Только в этом случае эти уровни будут соответствовать энергии квазичастиц — экситонов, электронно-дырочных пар, сильно связанных между собой.

Таким образом, каждый такой нанокристалл — квантовая точка — способен играть роль одиночного квантового излучателя, или люминесцентного зонда, который может быть использован для зондирования материалов. При этом физика самой квантовой точки оказывается тоже очень интересной, потому что в таком случае там будут упакованы тысячи атомов.

— Например?

— Например, классический материал, из которого удалось создать квантовую точку, — это селенид кадмия, довольно известный полупроводник. Тысячи таких атомов упакованы в сферическую квантовую точку, и они там тоже двигаются.

— А еще меньше что-то есть?

— Казалось бы, меньше точки нет ничего, но выяснилось, что внутренняя динамика такого объекта, полупроводникового нанокристалла, очень богата. Оказалось, например, что такой квантовый излучатель почему-то периодически из светящегося состояния вдруг проваливается в безызлучательное. Появляется такая телеграфная функция — он то светит, то не светит случайным образом. То есть наш фонарик стохастически случайным образом прыгает между светящимся и безызлучательным состояниями.

— А почему, неизвестно?

— Американские коллеги, но выходцы из советских научных школ А.Л. Эфрос и Мервин Розен предложили зарядовую модель, которая объясняет этот процесс прыжков. Но при этом не все эффекты могут быть достаточно хорошо и однозначно описаны с помощью этой модели. Эти исследования активно проводятся сейчас в лаборатории электронных спектров молекул ИСАН, тематика продвигается в новой лаборатории МПГУ, а для новых объектов, излучающих в том числе в инфракрасном диапазоне спектра, мы планируем развивать экспериментальные возможности Физического института в Троицке. Лидирующую роль в этих исследованиях и в целом в развитии тематики спектромикроскопии одиночных квантовых излучателей играет молодой ученый, без пяти минут доктор наук И.Ю. Еремчев.

На основе квантовых точек можно сделать много полезного. В отличие от органических молекул их можно синтезировать под заказ на заданную длину волны. Просто варьируя размеры излучающего ядра, мы фактически можем пробежать весь видимый диапазон от фиолетового до красного; энергию к этим излучателям можно подводить уже не только с помощью внешнего источника света, то есть получить не только фотолюминесценцию, но и электролюминесценцию.

— Получается?

— Да, мы получаем замечательные, яркие, с очень высоким квантовым выходом источники света. Вообще исследования различных композитов на основе квантовых точек очень эффективны при использовании комбинирования разных экспериментальных методов — электронной и атомно-силовой микроскопии, спектроскопии комбинационного рассеяния света, время-разрешенной спектроскопии. Такие комплексные исследования у нас проводит кандидат физико-математических наук К.Р. Каримуллин, пришедший к нам из знаменитой Казанской научной школы фотонного эха профессора В.В. Самарцева.

— Обычно говорят, что это нужно для создания квантового компьютера?

— Да, ключевой элемент оптического квантового компьютера — источник неклассического света одиночных или перепутанных фотонов. Каждая квантовая точка становится идеальным источником неклассического света, гарантированно испускающим в каждый момент времени только один фотон. Если разработать более сложную структуру, можно создавать парные фотоны. Сейчас очень много говорят о квантовом компьютере, о квантовой криптографии, когда нам нужны так называемые перепутанные состояния, например бифотоны. Так на основе парных квантовых точек предполагается создавать источники подобных перепутанных состояний. А мы пытаемся в нашей лаборатории наблюдать за фундаментальной составляющей: что же происходит в процессе взаимодействия одной-единственной квантовой точки со светом, который мы на него посылаем, почему эта квантовая точка переходит в безызлучательное состояние, что меняется в параметрах излучения, если мы эту квантовую точку помещаем в материалы с разными свойствами? В России есть несколько лабораторий, которые этим занимаются, — в Москве, Санкт-Петербурге, Новосибирске, Черноголовке.

— А что еще, кроме молекул и квантовых точек?

— У нас есть коллеги, которые умеют синтезировать химически другие центры окраски. В частности, в Институте физики высоких давлений им. Л.Ф. Верещагина РАН научились синтезировать алмазы с центрами окраски на основе кремния и на основе германия. Аналогичная группа есть в Институте общей физики им. А.М. Прохорова РАН. В ИФВД РАН мы сотрудничаем с группой профессора Е.А. Екимова, который синтезирует микро- и нанокристаллы с германиевыми центрами окраски методом синтеза при высокой температуре и высокого давления. А в ИОФАН в группе профессора В.Г. Ральченко используют несколько другой метод синтеза — химическое осаждение из газовой фазы. Синтезированные таким образом вакансионные центры окраски на основе германия в алмазе чрезвычайно ярко светят, обладают очень высоким квантовым выходом люминесценции, гораздо более стабильны по сравнению с квантовыми точками и молекулами.

Более того, оказывается, коллеги способны синтезировать настолько хорошие объекты, что у нас отсутствует эффект мерцания, позволяющий переходить в безызлучательное состояние. В случае центров окраски в алмазе оказывается возможным создать такой идеальный квантовый излучатель, который не мерцает. И это хорошо для квантовой оптики и для других технологий.

— А биомедицинские приложения?

— Их очень много. Когда мы говорим о сложной органике или о квантовых точках на основе селенида кадмия, индия или ртути, то обычно медики относятся к этому очень осторожно, потому что это токсичные материалы. Неизвестно, как мы можем использовать, например, эти квантовые точки для задач медицинской диагностики.

А в случае, если мы изготавливаем алмазный нанокристалл, есть основания полагать, что это будет нетоксичный материал, и тогда каждая светящаяся алмазная наночастица может быть использована в качестве медицинского нанозонда, не причиняя вреда организму на уровне отдельных клеток, но при этом реализуя ту самую технику визуализации.

— А что за сверхъяркие вспышки люминесценции вы обнаружили?

— Буквально в последние два-три года одна из работ была связана с тем, что мы обнаружили в нано- и микрокристаллах с центрами окраски германиевого типа эффект сверхъярких вспышек люминесценции. Оказывается, если такой микрокристалл легировать центрами окраски с высокой концентрацией, то здесь мы уже уходим от свечения одиночных центров и говорим об ансамбле. Как показали наши теоретики во главе с М.Г. Гладушем, в таких условиях появляется эффект бистабильности, когда ансамбль таких излучателей начинает излучать кооперативно. Кооперативное свечение подобных ансамблей центров окраски может быть в десять, а то и в сто раз больше, чем обычное люминесцентное свечение.

То есть наш нанокристалл или микрокристалл начинает светить значительно ярче, нежели обычный нанокристалл. И такое свечение нам удалось зарегистрировать впервые в мире.

— Московский педагогический государственный университет, где вы учились и теперь работаете, мало известен широким массам в плане изучения физики. Все знают о физических факультетах МГУ, МФТИ, МИФИ, но от вас я узнала, что великолепные физические школы создавались и в МПГУ…

— На эту тему можно было бы записать десять интервью. История на самом деле удивительная. Вообще, исторически это были Московские высшие женские курсы, первое высшее учебное заведение в нашей стране, где было разрешено обучаться женщинам. На рубеже веков так сложилось, что многие профессора из Московского государственного университета перешли в Московский педагогический (в то время — Высшие женские курсы). И на территории университета сразу же сложились несколько известных научных групп. Например, очень известная химическая школа будущего академика Н.Д. Зелинского базировалась как раз в МГПИ. Если говорить о физике, то отцом-основателем этого направления стал Э.В. Шпольский, ученик П.П. Лазарева, который, в свою очередь, был учеником П.Н. Лебедева. Это мощнейшая научная школа. У П.П. Лазарева было два известных ученика — С.И. Вавилов и Э.В. Шпольский. С.И. Вавилов в ФИАН занимался люминесценцией, а Э.В. Шпольский разрабатывал направление, связанное с люминесцентной спектроскопией, в педагогическом институте. При этом ему удавалось привлекать туда очень известных ученых. Там работали академик Г.С. Ландсберг, будущий нобелевский лауреат И.Е. Тамм, много известных теоретиков и экспериментаторов.

Сам Э.В. Шпольский через короткое время после создания журнала «Успехи физических наук», который был основан П.П. Лазаревым, стал главным редактором и в течение нескольких десятилетий возглавлял наш ведущий физический журнал и фактически заложил его традиции. Сейчас это самый высокорейтинговый, самый заметный физический журнал в нашей стране.

Хорошую службу сослужила дружба Э.В. Шпольского с еще одним нобелевским лауреатом, П.Л. Капицей, который был главным специалистом в стране по низким температурам. Эта криогенная тематика в педагогическом университете активно развивалась, что привело к созданию такого направления, как селективная спектроскопия сложных органических соединений.

Это направление продолжили и вывели на международный признанный уровень последователи Э.В. Шпольского — Р.И. Персонов, О.Н. Коротаев, И.С. Осадько. В последние годы мы объединились еще с одной научной школой МПГУ, работающей в области физики полимеров и нанокомпозитов, — школой профессора Г.М. Бартенева, чьи традиции продолжает почетный профессор МПГУ И.В. Разумовская.

Среди молодых кандидатов наук, развивающих объединенное научное направление фотоники перспективных наноматериалов, — К.А. Магарян, С.А. Бедин; активно работают студенты и аспиранты МПГУ, МФТИ, МГУ, НИУ ВШЭ, Сколтеха.

На стыке нескольких направлений сейчас успешно развиваются методы ультрачувствительной SERS-сенсорики и аналитики на основе гиперусиленного комбинационного рассеяния света. Так, новые SERS-усиливающие метаповерхности, синтезируемые с помощью оригинальной методики нашими молодыми учеными, обещают стать основой оперативного спектрохимического анализа и идентификации на уровне отдельных молекул и нанообъектов.

Нужно сказать о втором физическом направлении, развивающемся в МГПУ, которое исторически связывают с именем профессора Е.М. Гершензона, чья научная школа успешно работала в области радиофизики. Впоследствии его ученик, профессор Г.Н. Гольцман, который сейчас возглавляет и кафедру, и лаборатории, работающие в этом направлении, смог значительно продвинуться в области нанотехнологий. Они сумели сначала заложить фундаментальные принципы, а затем и создать уникальные фотодетекторы на инфракрасную область спектра.

— В чем их уникальность?

— В том, что впервые в мире удалось перевести эти детекторы в режим счета одиночных фотонов в инфракрасном диапазоне спектра. Более того, им удалось превратить науку в инновации, то есть появилось предприятие, которое по определенным направлениям до сих пор занимает лидирующие позиции в мире. Достаточно вспомнить знаменитый международный космический телескоп «Гершель», основным элементом которого стал инфракрасный детектор, изготовленный коллективом МПГУ. Мы же надеемся применить эти детекторы к исследованию спектров одиночных квантовых ИК-излучателей различной природы и химического состава.

На базе МПГУ эффективно реализуют коллаборации с научными институтами. В моем случае это ИСАН, ФИАН, ФИЦ «Кристаллография и фотоника», а также химические институты и университеты. Например, очень перспективно сотрудничество с группой сотрудников выдающегося химика, академика Ю.Г. Горбуновой, которые синтезируют органические функциональные макромолекулы — молекулярные наномашины.

А если говорить об образовательных проектах, реализуемых в университете, то там работает уникальная образовательная программа «Фундаментальная физика на английском языке». Это единственный в стране бакалавриат, где ребята с самого начала обучаются на английском языке. МПГУ осуществляет методическую поддержку многих академических популяризационных проектов: лекции ведущих ученых в базовых школах РАН, курсы повышения квалификации учителей, викторины и олимпиады.

Так, в 2021 г. прошла V Троицкая школа повышения квалификации учителей физики и астрономии на базе академических институтов наукограда Троицка, а третья Всероссийская викторина юных физиков ОФН РАН собрала в мае 2022 г. более 2,5 тыс. участников из почти 200 городов и поселений РФ и из-за рубежа. Молодые ученые нашей группы под председательством аспиранта А.И. Аржанова сформировали ячейку Young Minds Европейского физического общества. Мы проводим ежегодную Международную молодежную научную школу «Когерентная оптика и оптическая спектроскопия» на базе Казанского научного центра РАН, Казанского федерального университета и Академии наук Республики Татарстан. В августе запланировано проведение Международного Феофиловского симпозиума по спектроскопии кристаллов, легированных ионами редкоземельных и переходных металлов.

— Как думаете, преподавание на английском сейчас по-прежнему актуально?

— Без сомнения. Как бы ни возводились различные санкционные барьеры между странами, наука всегда остается интернациональной по своей сути. Более того, именно наука становится мостом для общения и восстановления нормальных отношений.

Фотографии предоставлены Андреем Витальевичем Наумовым
Беседовала Наталия Лескова
Оператор Александр Козлов

https://scientificrussia.ru/articles/clen-korrespondent-ran-andrej-naumov-spektroskopia-eto-zrenie-sovremennoj-nauki

30.06.22 30.06.2022 Афиша Daily. Под открытым небом Пущинской обсерватории пройдет фестиваль авангардной музыки и науки

«Точка190»/YouTube

2 июля в наукограде Пущино пройдет первый фестиваль авангардной музыки и науки «Пульсары». Об этом говорится в телеграм-канале творческого объединения «Точка 190».

Зрителей ждет концерт для птиц в поле, препарированный рояль, разговоры о науке и звездах, музыка под тарелкой огромного телескопа.

Под открытым небом Пущинской обсерватории Екатерина Державина сыграет на фортепиано произведения Иоганна Себастьяна Баха, Гленна Гульда и Арво Пярта. Варвара Крюкова и Влад Чубенко исполнят Джорджа Крама и Карлхайнца Штокхаузена на рояле, а альтист Сергей Полтавский — Кайю Саариахо и Стивена Райха. Экспериментальный импровизационный сет представят Аркадий Пикунов, Петр Ившин, Сергей Полтавский.

Послушать работы Николая Корндорфа, Оливье Мессиана, Клода Дебюсси и Джона Кейджа можно будет в поле на концерте для птиц, который даст Вера Воронежская. А ансамбль Rosarium под управлением Марины Катаржновой будет играть Пелециса.

В перерыве между выступлениями в антуражных локациях НИИ пройдет научно-популярный лекторий. Во время него директор ПРАО ФИАН Тюльбашев Сергей Анатольевич расскажет про обсерваторию, телескопы и историю открытия пульсаров.

Среди других спикеров — старший научный сотрудник ИФХИБПП РАН Лупачев Алексей Владимирович с лекцией «Биполярное расстройство научного мозга» и научная сотрудница ИФПБ РАН Ветошкина Дарья Васильевна с докладом «Кислородная катастрофа. История выжившего».

Семён Гудошников

https://daily.afisha.ru/news/65146-pod-otkrytym-nebom-puschinskoy-observatorii-proydet-festival-avangardnoy-muzyki-i-nauki/

29.06.22 29.06.2022 Научная Россия. Прошла первая защита выпускных работ бакалавров программы «Биофизика»

23 июня на базе Физического института им. П.Н. Лебедева РАН состоялась первая защита выпускных квалификационных работ (ВКР) бакалавров образовательной программы «Биофизика» Инженерно-физического института биомедицины НИЯУ МИФИ.

Заседание Государственной экзаменационной комиссии проходило под председательством д.х.н., профессора, академика РАН, научного руководителя ФИЦ Биотехнологии РАН В.О. Попова. В состав комиссии вошли: д.ф.-м.н., профессор, академик РАН, научный руководитель ПННТР "Ядерная медицина", ГК "Росатом" В.П. Смирнов, д.м.н., член-корреспондент РАН, генеральный директор, ФМБЦ ФМБА России А.С. Самойлов, д.ф.-м.н., зав. отделом, ИБХ РАН В.А. Олейников, к.ф.-м.н., зам. директора по научной работе ФИАН А.В. Колобов, к.б.н., в.н.с., ФНКЦ ФХМ ФМБА России А.Н. Богомазова, к.ф.-м.н., в.н.с., зав. лабораторией ИБХФ РАН С.Г. Андреев. 

Свои дипломные работы к защите представили 7 молодых физиков. Работы выполнялись на базе НИЯУ МИФИ, а также институтов-партнеров: Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, Институт биохимической физики им. Н.М. Эмануэля. Представленные работы посвящены различным областям биофизики:

  • изучение самосборки фосфолипидных производных циклодекстринов методом молекулярной динамики;
  • детекция и локализация злокачественных опухолей методами комбинационного рассеяния и анализ полученных спектров статистическими методами;
  • исследование взаимодействия биомакромолекул с органическими красителями;
  • полимерное моделирование структуры хромосом и исследование их радиационных повреждений;
  • разработка методики регистрации аффектов на основе физиологии мимики.

Защита ВКР показала, что выпускники обладают высоким уровнем теоретической и практической подготовки. Некоторые из представленных работ являются законченным научным исследованием, а их результаты будут опубликованы в ведущих научных журналах.

Часть выпускников бакалавриата планируют продолжить обучение в магистратуре, в том числе на базовой кафедре НИЯУ МИФИ – ФИАН «Полупроводниковая квантовая электроника и биофотоника».

Образовательная программа «Биофизика» ориентирована на подготовку специалистов, имеющих фундаментальные знания в области физики и математики, интегрированные с образованием в области биологии, химии, генной инженерии и биоинформатики.

Руководитель программы – Ирина Николаевна Завестовская, д.ф.-м.н., лауреат Премии Президента РФ в области образования, зав. лабораторией Радиационной биофизики и биомедицинских технологий ФИАН, профессор НИЯУ МИФИ.

Информация и фото предоставлены отделом по связям с общественностью ФИАН
Разместила Ирина Усик

https://scientificrussia.ru/articles/prosla-pervaa-zasita-vypusknyh-rabot-bakalavrov-programmy-biofizika

 

29.06.22 29.06.2022 Атомная Энергия 2.0. В ФИАН прошла первая защита выпускных работ бакалавров образовательной программы «Биофизика» НИЯУ МИФИ

23 июня на базе Физического института им. П.Н. Лебедева РАН состоялась первая защита выпускных квалификационных работ (ВКР) бакалавров образовательной программы «Биофизика» Инженерно-физического института биомедицины НИЯУ МИФИ.

Заседание Государственной экзаменационной комиссии проходило под председательством д.х.н., профессора, академика РАН, научного руководителя ФИЦ Биотехнологии РАН В.О. Попова. В состав комиссии вошли: д.ф.-м.н., профессор, академик РАН, научный руководитель ПННТР "Ядерная медицина", ГК "Росатом" В.П. Смирнов, д.м.н., член-корреспондент РАН, генеральный директор, ФМБЦ ФМБА России А.С. Самойлов, д.ф.-м.н., зав. отделом, ИБХ РАН В.А. Олейников, к.ф.-м.н., зам. директора по научной работе ФИАН А.В. Колобов, к.б.н., в.н.с., ФНКЦ ФХМ ФМБА России А.Н. Богомазова, к.ф.-м.н., в.н.с., зав. лабораторией ИБХФ РАН С.Г. Андреев.  

Свои дипломные работы к защите представили 7 молодых физиков. Работы выполнялись на базе НИЯУ МИФИ, а также институтов-партнеров: Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, Институт биохимической физики им. Н.М. Эмануэля. Представленные работы посвящены различным областям биофизики:

  • изучение самосборки фосфолипидных производных циклодекстринов методом молекулярной динамики;
  • детекция и локализация злокачественных опухолей методами комбинационного рассеяния и анализ полученных спектров статистическими методами;
  • исследование взаимодействия биомакромолекул с органическими красителями;
  • полимерное моделирование структуры хромосом и исследование их радиационных повреждений;
  • разработка методики регистрации аффектов на основе физиологии мимики.

Защита ВКР показала, что выпускники обладают высоким уровнем теоретической и практической подготовки. Некоторые из представленных работ являются законченным научным исследованием, а их результаты будут опубликованы в ведущих научных журналах.

Часть выпускников бакалавриата планируют продолжить обучение в магистратуре, в том числе на базовой кафедре НИЯУ МИФИ – ФИАН «Полупроводниковая квантовая электроника и биофотоника».

Образовательная программа «Биофизика» ориентирована на подготовку специалистов, имеющих фундаментальные знания в области физики и математики, интегрированные с образованием в области биологии, химии, генной инженерии и биоинформатики.

Руководитель программы – Ирина Николаевна Завестовская, д.ф.-м.н., лауреат Премии Президента РФ в области образования, зав. лабораторией Радиационной биофизики и биомедицинских технологий ФИАН, профессор НИЯУ МИФИ.

Источник: ФИАН

https://www.atomic-energy.ru/news/2022/06/29/125946

23.06.22 23.06.2022 Научная Россия. Член-корреспондент РАН Юрий Ковалев: «Человечество движется вглубь вселенной»

«Если звезды зажигают — значит — это кому-нибудь нужно?» — писал классик. Безусловно, это нужно, ведь без звезд не было бы Вселенной и нас с вами. Но вот как их зажигают? Что за процессы там происходят? А как звезды умирают и что случается с ними потом? Зачем нам эти знания и почему надо запускать в космос сложные телескопы? Об этом рассказывает астрофизик Юрий Юрьевич Ковалев, главный научный сотрудник Астрокосмического центра Физического института им. П.Н. Лебедева РАН, руководитель лаборатории внегалактической радиоастрономии АКЦ ФИАН, руководитель лаборатории фундаментальных и прикладных исследований релятивистских объектов вселенной МФТИ, доктор физико-математических наук, член-корреспондент РАН.

— Юрий Юрьевич, мы сидим на фоне замечательных макетов наших телескопов. Это «Радиоастрон», который, как известно, уже слетал и очень многое сделал, и «Миллиметрон», который еще пока не летал, но мы все надеемся, что будет запущен. «Радиоастрон» продолжает давать ученым пищу для размышлений, несмотря на то что программа вроде бы завершена. Какие последние научные данные заставили вас удивиться или обрадоваться?

— Наш замечательный спутник «Спектр-Р», на котором стоит космический телескоп проекта «Радиоастрон», продолжает летать. Он перестал давать научную информацию, но его космическая жизнь продолжается. Еще долгие годы он будет летать по своей вытянутой орбите вокруг Земли. Фактически эта орбита имеет размах, или, как мы говорим, апогей, в точке наибольшего удаления около 300–350 тыс. км. Это было принципиально важно. Это решение руководителя проекта Н.С. Кардашева, на котором он настаивал, а многие с ним спорили.

Зачем вообще запустили радиотелескоп в космос? Для того чтобы он смог улучшить возможности наземных телескопов по разрешению космических объектов в 30 раз, то есть четкость изображений, которые мы получаем, значительно выше по сравнению с наилучшими возможностями аналогичных наземных телескопов.

— И чем более вытянутая орбита, тем больше возможностей?

— Совершенно верно. Однако будет неправильно думать, что для нас важна только эта точка максимального удаления. В измерениях использовались и наземные телескопы, расположенные в разных странах мира: Европе, США, Африке, Австралии, Китае, Южной Корее, Японии. В том числе и российские. Это 30-метровые телескопы системы «Квазар» Института прикладной астрономии РАН, расположенные под Санкт-Петербургом, на Кавказе и рядом с озером Байкал. Это калязинский 64-метровый телескоп. Важно, что наблюдения ведутся совместной системой, как если бы у нас был виртуальный телескоп размером Земля — Луна.

Для того чтобы наилучшим образом «построить» такой гигантский виртуальный телескоп, нужно было проводить измерения большой системы не только в точке максимального удаления спутника, а по всей орбите, в зависимости от того, какие научные задачи мы решали и планировали вместе с научной группой как раз здесь, в Астрокосмическом центре.

— Что сейчас происходит в АКЦ ФИАН?

— Мы собрали несколько петабайт данных с наземных телескопов и с космического телескопа. Первый шаг — корреляция: когда мы производим результат, дающий возможность научным группам проводить анализ и решать научные задачи. Этот этап практически завершен.

На этом и на следующем этажах здания, в котором мы сейчас находимся, стоит небольшой суперкомпьютер, на котором работала группа коррелятора, созданного в Астрокосмическом центре. Примерно 90% данных, полученных с телескопа «Радиоастрон», были прокоррелированы нашим коррелятором в Астрокосмическом центре, и около 10% данных нам коррелировали зарубежные коллеги. Это центры, которые находятся в Германии и Нидерландах.

— Каковы последние результаты, о которых хотелось бы сказать?

— Давайте начнем с тематики, которой была посвящена диссертация, защищенная здесь у нас позавчера. Это тематика, связанная с изучением, казалось бы, такого «скучного» вопроса, как рассеяние распространения радиоволн через среду в нашей галактике. На самом деле это невероятно интересное явление, потому что, в первую очередь, что такое рассеяние? Когда какой-то объект скрыт от нас за облаком плазмы, он выглядит более крупным, чем есть на самом деле. Получается такая космическая «жаба». Анализируя эти данные, вы можете восстановить информацию о турбулентных облаках межзвездного газа, которые есть в нашей галактике.

— Но что это дает?

— «Радиоастрон» обнаружил по пульсарам новый эффект рассеяния, который оказался очень важным как раз для центра нашей галактики. Центр Галактики — мы подтвердили эти результаты и по наземным наблюдениям, и с «Радиоастроном» — очень сильно рассеивается, причем хитрым образом: на изображении объекта появляются мелкие пятнышки. Если вы хотите четко рассмотреть изображение центра нашей галактики, тени вокруг черной дыры, вам крайне необходимо учитывать эффекты рассеяния, которые открыл и исследовал «Радиоастрон».

— Какие еще имеются важные результаты?

— Расскажу о свежем результате, описание которого недавно отослано в научный журнал. Ученые получили и исследовали высокоточное изображение горячего выброса квазара 3С 279. Итак, что такое квазар? Это активная галактика на расстоянии миллиардов световых лет от Земли. В центре находится сверхмассивная черная дыра — не такая, как в центре нашей галактики, «скучная» и маленькая, а огромная. Масса таких черных дыр — миллиарды солнц. Вокруг них формируются диски из пыли, из вещества, которое падает на центральную черную дыру, и вся эта центральная машина вращается.

За счет своего вращения, магнитного поля, которое там формируется, вещество может ускоряться до скоростей, очень близких к скорости света. И мы на «Радиоастроне» пользуемся возможностью изучить свойства выбросов горячей, как мы ее называем, релятивистской плазмы, то есть газа, который летит с околосветовой скоростью.

«Радиоастрону» удалось восстановить внутреннюю структуру такого джета и исследовать, как плазма формируется и двигается по струе, как развиваются плазменные нестабильности и какова структура магнитного поля. Это крайне важно, потому что благодаря этому мы понимаем механизм ускорения частиц до скоростей света.

— Почему вам так интересно, как ускоряются частицы?

— Здесь я перекину мостик к другим свежим новостям. Это новости о нейтрино. Еще один важный результат «Радиоастрона» — открытие экстремальной яркости квазаров. Оказалось, что излучение центральных областей квазаров намного ярче, чем предсказывала теория и считали раньше ученые. «Радиоастрон» смог это увидеть именно благодаря построенному интерферометру размером до Луны.

— А вы считали, что это невозможно?

— Да, существует физический механизм быстрого охлаждения излучающих электронов, соответственно, яркость этих квазаров теоретически не может превысить предсказанный предел. А «Радиоастрон» показал, что этот предел нарушается.

— Каким образом?

— Одна из идей, которая нам раньше казалась маловероятной, заключается в том, что, может быть, центральные машины далеких активных галактик значительно эффективнее, чем нам говорят теоретики, и они могут ускорять до скоростей света не только электроны, но даже массивные протоны.

Вообще, почему мы носимся с этими электронами и протонами? Напоминаю, что масса протонов примерно в 1,8 тыс. раз больше, чем масса электронов. Попробуйте разогнать до световой скорости сначала электрон (это получилось), а потом что-то в 2 тыс. раз массивнее. Это реально очень сложно.

— По всей видимости, для этого нужна гигантская энергия?

— Совершенно верно. Для этого нужны гигантские поля. Считалось, что это не особенно реалистично.

А последние результаты, которые мы получаем вместе с коллегами, занятыми нейтринной астрономией, показывают, что все возможно. Напомню, что нейтрино высоких энергий на Земле ловят нейтринные телескопы. Это российский телескоп, стоящий в озере Байкал. И есть зарубежные, один находится в Средиземном море, а другой во льдах на Южном полюсе.

Вот наш свежий результат: похоже, нейтрино высоких энергий рождаются именно в тех самых квазарах, далеких активных галактиках, которые, по данным, полученным благодаря «Радиоастрону», могут быть экстремально яркими.

Почему это важно? Да потому что нейтрино такой энергии может появиться на свет только из протона, разогнанного до скорости света. Судя по всему, в далеких активных галактиках протоны действительно могут эффективно ускоряться. И это помогает решить проблему экстремальной яркости квазаров — открытие, которое сделал «Радиоастрон», — и одновременно ответить на вопрос о природе нейтрино: понять, где и как они образуются.

— Но наверняка есть и вопросы, на которые вы пока не можете найти ответов?

— Разумеется, и это как раз широкое поле деятельности на ближайшие годы для нас, астрофизиков. Это вопросы, как ускоряются в галактиках протоны и как рождаются нейтрино. Это то, чем мы будем заниматься вместе с коллегами с Байкала в ближайшие годы. У нас замечательная коллаборация.

И хотя я здесь рассказываю про «Радиоастрон», не могу не упомянуть еще об одном замечательном российском радиотелескопе, уже наземном, РАТАН-600. Мы его использовали совместно с «Радиоастроном» и ответили на вопрос, когда квазары могут быть наиболее яркими. А с другой стороны, мы обнаружили, что нейтрино предпочитают рождаться в момент вспышек в квазарах.

Здесь российские телескопы сошлись вместе и сделали сильное утверждение: квазары могут быть экстремально яркими, они могут ускорять протоны до скоростей света и рождать нейтрино очень высоких энергий.

Теперь осталось понять, как все это происходит, и тогда будет сделан очередной шаг за горизонт наших познаний о Вселенной, в которой мы живем. Очередной, но далеко не последний.

Беседовала Наталия Лескова
Фотограф Елена Либрик
Оператор Александр Козлов

https://scientificrussia.ru/articles/clen-korrespondent-ran-urij-kovalev-celovecestvo-dvizetsa-vglub-vselennoj

29.06.22 29.06.2022 Научная Россия. Фантастическая точность. О ядерных оптических часах рассказывает чл.-корр. РАН Николай Колачевский

«Научная Россия» продолжает цикл лекций с членом-корреспондентом РАН, директором Физического института им. П.Н. Лебедева РАН (ФИАН) Николаем Николаевичем Колачевским. В первой лекции мы говорили о загадке зарядового радиуса протона — одной из важных проблем физики последнего десятилетия, а сегодня речь пойдет об оптических ядерных часах.

Эпоха оптических часов бурно развивается, говорит Николай Колачевский, и такие часы уже сегодня демонстрируют просто фантастическую точность. Что такое оптические ядерные часы и зачем они нужны? Какими будут оптические часы нового поколения и какие открытия предстоит совершить ученым в этой области физики? Ответы на эти и многие другие вопросы — в нашей лекции.

ССЫЛКИ ПО ТЕМЕ:

Лекция проведена при поддержке Министерства науки и высшего образования РФ и Российской академии наук.

В видео использованы иллюстрации с сайтов 123RF, Вики Чтение и из архива «Научной России».

Автор Янина Хужина 
Фотограф Елена Либрик 
Оператор Алексей Корноухов

https://scientificrussia.ru/articles/fantasticeskaa-tocnost-o-adernyh-opticeskih-casah-rasskazyvaet-cl-korr-ran-nikolaj-kolacevskij

29.06.22 29.06.2022 Атомная Энергия 2.0. Российские учёные создали нейтронный источник с рекордной производительностью

Один из лазеров типа PHELIX. (Фото: semanticscholar.org)

Российские учёные из МФТИ, ОИВТ РАН и ФИАН создали сверхинтенсивный источник нейтронов. Его эффективность вполне которого сопоставима с работой огромного ускорителя частиц, но при этом размеры не превышают обычную комнату.

Сообщается, что в основу устройства лёг высокоэнергетический лазер PHELIX и направили его луч на мишень из полимерной пены. Мощность луча при этом достигал 1015 Вт.

В создании пены специалисты использовали материал триацетат целлюлозы с плотностью всего 2 мг/см3. При первом импульсе лазера, который продлился 1 наносекунду, была произведена ионизация атомов мишени для создания плазменного облака. А вот следующий импульс длился пикосекунду и призван ускорить электроны в плазме.

Отметим, что по последним данным, при создании установки, отечественные ученые установили рекорд по эффективности преобразования энергии лазера в гамма-кванты с энергией выше 10 МэВ.

Источник: Ferra.ru

https://www.atomic-energy.ru/news/2022/06/29/125931

27.06.22 27.06.2022 Взгляд. В России запланировали начать производство препаратов для клеточной терапии

Резидент ОЭЗ «Технополис Москва» компания «Акрус БиоМед» осенью 2022 года начнет производить препараты для клеточной терапии, используемые при лечении длительно незаживающих ран, язв и обширных ожогов.

«В ОЭЗ «Технополис «Москва» разработали интеллектуальную платформу для изготовления деталей на заказ. К инструменту уже подключилось свыше 50 компаний из разных регионов России. Интеллектуальная производственная платформа I5.Solutions автоматизирует процедуру заказа деталей. Сделать это можно в три клика: загрузить 3D-модель изделия, определить технологию производства и выбрать производителя. Умная система за несколько секунд автоматически рассчитает способы создания деталей, оценит их стоимость и возможность предоставления скидок, сообщает Экспертный институт социальных исследований (ЭИСИ) в хрониках «Сделано в России».

«Ижевский радиозавод начал выпускать системы, обеспечивающие мобильной связью и интернетом, и планирует выйти на импортонезависимость в сфере телекоммуникаций, чтобы конкурировать с Huawei и Ericsson. Задача системы oDAS RADIUS - обеспечить мобильной связью и интернетом железные, автомобильные дороги и удаленные населенные пункты. Она увеличивает зону покрытия базовой станции, поддерживает стандарты 2G, 3G и 4G. Система проще и дешевле в эксплуатации, чем зарубежное оборудование», говорится в Telegram-канале института.

«Ученые Сибирского медуниверситета и Томского НИИ фармакологии занимаются разработкой отечественного препарата по борьбе онкологическими заболеваниями «Полистан». Препарат помогает легче перенести пациентам последствия химиотерапии, которая токсична и зачастую наносит серьезный вред организму. Препарат прошел доклинические испытания», – отметили эксперты.

Международная группа ученых из МФТИ, Объединенного института высоких температур РАН и Физического института им. П.Н. Лебедева РАН разработала новый и компактный ускоритель частиц – синхротрон. Такое изобретение имеет большое значение для науки, т.к. позволяет изучить биомолекулы и полимеры, которые применяются во FLASH-радиотерапии (облучении опухоли). Главной особенностью их изобретения является компактность и низкая себестоимость производства.

Специалисты Центрального аэрогидродинамического института имени профессора Н.Е. Жуковского разработали и внедрили технологию производства деталей посредством сплавления металлических порошков лазерных лучом. По новой аддитивной технологии специалисты ЦАГИ в кратчайшие сроки произвели детали для моделей сверхзвукового гражданского самолета, турбореактивного двигателя нового поколения и другие изделия.

Ранее в ЭИСИ сообщили, что российские ученые разработали возвращающие людям зрение и слух наноимпланты.

https://m.vz.ru/news/2022/6/27/1164952.html

Подкатегории