СМИ о нас

11.02.25 10.02.2025 Телеграм-канал Цифровой Росатом. Директор ФИАН Николай Колачевский призвал гордиться российскими учеными

Директор Физического института имени П.Н. Лебедева РАН Николай Колачевский призвал гордиться российскими учеными, рассказал о приходе научной молодежи в квантовую сферу и отметил, что российским исследователям приходится добиваться результатов в условиях серьезной международной квантовой гонки.

"Когда мы говорим про науку, за каждым ее красивым образом стоит большая работа людей. Что удалось за эти пять лет сделать в квантовой сфере? Это сильные научные коллективы, которые добились значительных результатов, и мы можем ими гордиться. Выросло новое поколение ученых, и это очень важно: возникла возможность масштабирования количества научных групп. Это исторический шаг, потому что следующие шесть лет над квантовыми задачами будут ответственно работать в качестве лидеров не только те, кто начинал, но и те молодые исследователи, которые сформировали внутреннее желание быть лидером лаборатории или группы. Нам нужно гордиться нашими алгоритмистами и развивать это направление, потому что без грамотных математиков, приземленных «к железу», цели, которые мы обсуждаем, трудно достижимы. Мы можем гордиться тем, что получили результаты, которые можем продемонстрировать, в том числе, на мировом уровне. Какие уроки мы вынесли? Пожалуй, больше всего беспокоит то, что квантовая гонка — это очень агрессивная гонка технологий. Но если мы освоим и сможем использовать передовые технологии, нанофабрикации, оптические технологии, технологии сенсоров, которые будут использоваться для квантовых вычислителей, то мы прочно закрепимся в числе стран, лидирующих в квантовых технологиях. При этом важно помнить, что четыре платформы, на которых создаются квантовые вычислители, не исчерпывают научное знание. Наверняка будут еще прорывы. И на этом надо сфокусировать значительные усилия, которые позволят сделать неожиданные шаги вперед".

https://t.me/digitalRosatom/2816

11.02.25 10.02.2025 Атомная Энергия 2.0. Росатом к 2030 году планирует масштабное освоение промышленных квантовых технологий

Реализацию первой дорожной карты по квантовым вычислениям можно признать успешной: достигнуты целевые показатели, обеспечившие рывок России в мировых научных и технологических процессах, а также заложены основы экосистемы квантовых технологий, включая исследовательскую инфраструктуру, сообщество ученых и инженеров, систему образовательных программ и проектов.

Таков общий вывод стратегической сессии Госкорпорации «Росатом» «Квантовый проект 2020-2030», в ходе которой были подведены итоги реализации дорожной карты развития квантовых вычислений на 2020-2024 гг., а также обсуждены подходы к следующему этапу работы на горизонте 2030 года. Мероприятие прошло в минувшие выходные в Музее «Атом» на ВДНХ.

Основным достижением стало создание единого коллектива исследователей, в который вошли свыше 600 ученых из более чем 20 ведущих российских вузов и академических институтов. Их усилиями был российских прорыв в сфере квантовых вычислений. В 2024 году при координации «Росатома» учеными Физического института имени П.Н. Лебедева и Российского квантового центра был создан российский 50-кубитный квантовый компьютер на ионах, а учеными МГУ имени М.В. Ломоносова и Российского квантового центра – прототип 50-кубитного квантового вычислителя на одиночных нейтральных атомах рубидия.

В целом созданы работающие квантовые вычислители на всех четырех платформах, которые считаются в мире приоритетными в качестве основы для квантовых вычислителей, – ионах, атомах, фотонах, сверхпроводниках. За этот период Россия вошла в число шести стран, которые обладают квантовыми компьютерами объемом 50 кубитов и выше.

Реализация дорожной карты по квантовым вычислениям на 2025-2030 гг. будет нацелена на достижение качественных эффектов развития квантовых технологий в России. В их числе – масштабирование проекта для обеспечения технологического суверенитета и глобальной конкурентоспособности России в стратегической перспективе. Главное в этом направлении – овладение практикой промышленного использования квантовых технологий. Также одна из важных задач – построение основных элементов национальной квантовой индустрии, конкурентоспособной в международном масштабе. При этом в соответствии с нацпроектом «Экономика данных» сфера ответственности «Росатома» существенно расширится: перед Госкорпорацией поставлена задача координации высокотехнологичного направления «Квантовые сенсоры».

Генеральный директор Госкорпорации «Росатом» Алексей Лихачев в своем выступлении подчеркнул, что тематика квантовых технологий прочно вошла в повестку страны и назвал приоритетной задачей запуск их практического применения в экономике и социальной сфере:

«Подводя итог дорожной карты по квантовым вычислениям, в первую очередь отмечу, что в стране появилось квантовое сообщество, и полученные результаты – наша совместная заслуга. Мы работаем на всех основных платформах, на которых в мире создаются квантовые вычислители, у нас есть возможность обмениваться мнениями, получать государственную помощь, представлять свои результаты, запускать программы и проекты, связанные с подготовкой кадров и международной деятельностью. Ну и, конечно, искать главное измерение – практическое применение квантовых технологий в нашей жизни. Второе, квантовая тематика стала частью повестки страны. Этого не было до 2020-го года, это стало возможным, благодаря, прежде всего, президенту России, и благодаря нашей с вами работе. И третье, из страны, которая еще недавно находилась вне квантовой борьбы, мы вошли в статус страны, которая очевидно сократила разрыв».

Глава «Росатома» отметил, что на новом этапе квантового проекта, связанном с расширением его масштаба, необходимо четко сформулировать образ результата, который должен быть «одновременно духоподъемным, мобилизующим и реалистичным»:

«Особый фундаментальный вызов состоит в том, чтобы создать идею, которая позволит утвердить роль и место квантовых технологий в стране».

Директор по квантовым технологиям Госкорпорации «Росатом» Екатерина Солнцева назвала переход от исследований в области квантовых вычислений к их практическому применению серьезным вызовом нового этапа квантового проекта, ответом на который станет усиление квантового направления как в части стратегического управления, так и с точки зрения систематизации потенциала российской науки и промышленности:

«Нас ждет серьезная работа в рамках «пилотов» по подтверждению эффективности применения квантовых технологий для решения задач в интересах «Росатома», партнеров и страны в целом. В этой связи возрастает роль атомной отрасли как полигона для тестирования и выработки лучших практик промышленного применения «квантов». Мы понимаем, что для общего успеха нужна концентрация усилий в масштабах страны: этому послужит создание единой национальной платформы развития квантовых технологий. Мы готовы к активной совместной работе».

Советник главы «Росатома», сооснователь Российского квантового центра Руслан Юнусов отметил, что дальнейшая работа в области квантовых технологий требует укрепления экосистемы квантового проекта в соответствии с масштабом задач новой дорожной карты и нацпроекта «Экономика данных»:

«За время работы над проектом в области квантовых вычислений в России сформировалась сильная научная экосистема – по нашим оценкам, до 80% профильных команд страны активно участвовали в работе над дорожной картой. Мы продолжаем развивать эту экосистему как базу создания в стране квантовой индустрии, не просто привлекая высококвалифицированных специалистов, но организуя подготовку талантливых кадров внутри страны, чтобы к моменту внедрения квантового компьютера в реальных секторах экономики наши специалисты уже обладали необходимыми компетенциями для достижения поставленных государством целей. К этому стоит добавить включение в работу индустриальных партнеров, которые призваны стать квалифицированными заказчиками внедрения квантовых технологий».

Научный руководитель Национального центра физики и математики (НЦФМ), академик РАН Александр Сергеев в ходе стратегической сессии "Квантовый проект: 2020-2030", отметил важную роль квантового направления в технологическом ландшафте будущего и указал, что научно-технический потенциал «Росатома» является основой развития, а перспективе - применения квантовых технологий в атомной отрасли:

«Росатом – это корпорация мирового уровня, которая является глобальным лидером в области атомных технологий. Но Росатому по силам выйти в лидеры не только в науке и технологиях в области атомной энергетики, а и в ряде других направлений. И если мы сейчас посмотрим на направления, которые будут определять мировой научно-технологической прогресс, то очевидно, что квантовые технологии будут играть в будущем очень существенную роль. Замечу, что сама атомная отрасль связана с квантовыми технологиями: деление ядра, синтез ядра, сверхпроводимость… На самом деле, для нас не ново то, что мы занимаемся квантовой технологией. Но в чём суть момента, который мы сейчас обсуждаем? Суть второй квантовой революции заключается в том, что квантовые технологии заявили о своем существенном присутствии в информационных технологиях. Получение информации, хранение информации, передача информации, обработка информации. Понятно, что у различных квантовых технологий есть разные степени зрелости, к примеру, квантовые вычисления - самое непростое направление. Но в целом мы уже сейчас видим существенное применение квантовых технологий. И очень хорошо, что в атомной отрасли есть предприятия, которые и готовы работать по этой тематике».

Директор Физического института имени П.Н. Лебедева РАН Николай Колачевский призвал гордиться российскими учеными, рассказал о приходе научной молодежи в квантовую сферу и отметил, что российским исследователям приходится добиваться результатов в условиях серьезной международной квантовой гонки.

«Когда мы говорим про науку, за каждым ее красивым образом стоит большая работа людей. Что удалось за эти пять лет сделать в квантовой сфере? Это сильные научные коллективы, которые добились значительных результатов, и мы можем ими гордиться. Выросло новое поколение ученых, и это очень важно: возникла возможность масштабирования количества научных групп. Это исторический шаг, потому что следующие шесть лет над квантовыми задачами будут ответственно работать в качестве лидеров не только те, кто начинал, но и те молодые исследователи, которые сформировали внутреннее желание быть лидером лаборатории или группы. Нам нужно гордиться нашими алгоритмистами и развивать это направление, потому что без грамотных математиков, приземленных «к железу», цели, которые мы обсуждаем, трудно достижимы. Мы можем гордиться тем, что получили результаты, которые можем продемонстрировать, в том числе, на мировом уровне. Какие уроки мы вынесли? Пожалуй, больше всего беспокоит то, что квантовая гонка — это очень агрессивная гонка технологий. Но если мы освоим и сможем использовать передовые технологии, нанофабрикации, оптические технологии, технологии сенсоров, которые будут использоваться для квантовых вычислителей, то мы прочно закрепимся в числе стран, лидирующих в квантовых технологиях. При этом важно помнить, что четыре платформы, на которых создаются квантовые вычислители, не исчерпывают научное знание. Наверняка будут еще прорывы. И на этом надо сфокусировать значительные усилия, которые позволят сделать неожиданные шаги вперед».

Госкорпорация «Росатом» – глобальный технологический многопрофильный холдинг, объединяющий активы в энергетике, машиностроении, строительстве. Включает в себя более 460 предприятий и организаций, в которых работает около 400 тыс. человек. С 2020 года «Росатом» отвечает за реализацию дорожной карты (ДК) по развитию высокотехнологичной области «Квантовые вычисления». Паритетно с государством Госкорпорация вкладывает собственные внебюджетные средства в реализацию дорожной карты: общий объем финансирования на 2020-2024 годы составил 24 миллиарда рублей, из которых 12 млрд было вложено «Росатомом». Важной задачей ДК стало создание российского квантового компьютера - проект реализуется научными коллективами Российского квантового центра (РКЦ), Физического института имени Лебедева РАН (ФИАН), МГУ имени М.В. Ломоносова, Университета МИСИС, МФТИ и других ведущих научных центров. В 2024 году в рамках ДК был создан российский 50-кубитный квантовый компьютер на ионах (учеными ФИАН и РКЦ), а также прототип 50-кубитного квантового вычислителя на одиночных нейтральных атомах рубидия (учеными МГУ и РКЦ). В целом Россия, наряду с США и Китаем, находится в числе трех стран-лидеров, создавших квантовые компьютеры на всех четырех платформах, которые считаются в мире приоритетными в качестве основы для квантовых вычислителей - сверхпроводники, ионы, нейтральные атомы и фотоны. Важным результатом реализации квантовой ДК является создание уникального коллектива ученых и инженеров, в который входят более 1000 специалистов, включая порядка 600 ученых. Создание квантовых вычислителей сопровождается формированием в России системы квантового образования, которая охватывает среднее и высшее профессиональное образование, а также усилия по переподготовке учительского состава. Реализация дорожной карты по квантовым вычислениям на 2025-2030 гг. будет нацелена на достижение качественных эффектов развития квантовых технологий в России. Главное в этом направлении – овладение практикой промышленного использования квантовых технологий.

https://www.atomic-energy.ru/news/2025/02/10/153343

11.02.25 09.02.2025 Российская академия наук. Члены РАН выступили с научными лекциями в парке «Зарядье»

Восьмого февраля, в День российской науки, член-корреспондент РАН Андрей Наумов прочитал лекцию о квантовой физике на фестивале «Громкий голос российской науки» в научно-познавательном центре «Заповедное посольство» парка «Зарядье». Событие дало старт большой серии научных мероприятий, которые пройдут в парке в 2025 году.

Квантовая механика является фундаментальной теорией, описывающей поведение материи и энергии на микроскопическом уровне, рассказал учёный. Её принципы лежат в основе всех физических явлений, но в макромире это влияние проявляется косвенно. Лектор напомнил, что решением Организации Объединенных Наций в ознаменование 100-летия возникновения квантовой механики 2025 год объявлен Международным годом квантовой науки и технологий.

«Именно в 1925 году появляются ключевые постулаты квантовой физики — уравнение Шрёдингера, волновая теория де Бройля и соотношение неопределённостей Гейзенберга <…> У каждого из нас есть приборы, которые изготовлены с использованием инструментов квантовой физики, либо непосредственно используют квантовые эффекты. Именно об этом я сегодня поговорю», — начал Андрей Наумов.

В ходе лекции слушатели узнали о революционных открытиях в квантовых технологиях, вкладе российских учёных в разработку передовых устройств и ближайших перспективах развития области.

«Квантовые компьютеры называют "‎атомной бомбой XXI века"‎. Считается, что та страна, которая первой создаст полноценный квантовый компьютер, обеспечит себе лидерство на многие годы вперёд. Скорость квантового компьютера превышает обычные компьютеры в миллиарды раз, решая очень сложные задачи. У нас в стране есть лидеры этой области, в частности, группа под руководством директора ФИАН Николая Колачевского. Она создала первый в России квантовый вычислитель, который работает на одиночных атомах», — рассказал член-корреспондент РАН.

Отвечая на вопрос об актуальности темы, Андрей Наумов подчеркнул, что мир меняется стремительно: исчезают одни профессии, появляются другие. Поэтому людям нужно популярно рассказывать о том, что происходит в современной науке и технологиях. «Квантовая физика — одно из самых актуальных направлений наряду с искусственным интеллектом, новой химией, нанотехнологиями и природоподобными технологиями. Популяризация для широких слоёв населения необходима, чтобы родители могли объяснять детям важность изучения физики <…> Современный мир развивается настолько быстро, что постоянное обучение становится необходимостью. Это вопрос образования на всех уровнях — от детского сада до непрерывного обучения взрослых».

Также в первый день фестиваля с лекциями выступили члены-корреспонденты РАН Евгений Антипов и Алексей Суров.

9 февраля фестиваль продолжит свою работу. С утра и до вечера ведущие учёные будут читать лекции на самые разные темы: от планирования медицинских экспериментов и анализа болезней животных до изучения Северного полюса и генной инженерии растений. Также участники узнают, почему не стоит бояться атомной энергии и что будет, если исчезнут все бактерии.

Вход на лекции бесплатный. Требуется регистрация по ссылке.

https://new.ras.ru/activities/news/chleny-ran-vystupili-s-nauchnymi-lektsiyami-v-parke-zaryade/

11.02.25 09.02.2025 Российская газета. Дорожную карту для российского квантового проекта продлили до 2030 года и обрисовали ее в музее «Атом»

В День российской науки представили итоги первых четырех лет реализации в нашей стране квантового проекта и обрисовали контуры его второго этапа - на 2025-2030 годы.

Первое и главное, что было публично заявлено - Россия сокращает отрыв от лидеров в области квантовых вычислений. А именно так стоял вопрос в 2020 году, когда у нас была сформирована первая дорожная карта и ответственность за это направление правительство РФ возложило на корпорацию "Росатом".

Четыре года назад мы имели всего один вычислитель на два кубита. Сегодня - пять вычислителей на разных платформах, а Россия в целом вошла в топ-6 стран с более чем 50 кубитами. Сейчас Российская Федерация наряду с США и Китаем - в числе трех стран-лидеров, создавших квантовые компьютеры на всех четырех платформах, которые считаются приоритетными как основы для квантовых вычислителей: на основе сверхпроводников, ионов, нейтральных атомов и фотонов.

"Из страны, которая была вне квантовой "борьбы", мы поднялись до уровня, когда Россия догоняет лидеров", - заявил глава "Росатома" Алексей Лихачев и дал понять, что разрыв сокращается.

Вслед за ним на стратегической сессии в павильоне "Атом" (теперь его именуют музеем) дали развернутые пояснения о том, что сделано и что предстоит, ключевые лица в российском квантовом проекте: Руслан Юнусов (сооснователь Российского квантового центра, а также - советник главы "Росатома"), Николай Колачевский (директор Физического института имени П.Н. Лебедева РАН и научный руководитель дорожной карты развития высокотехнологичной области "Квантовые вычисления"), Екатерина Солнцева (только что назначена директором по квантовым технологиям госкорпорации "Росатом").

А из зала живо реагировали на все происходившее их коллеги, единомышленники и, в хорошем смысле, соперники-конкуренты.

В Китае, США и России созданы квантовые компьютеры на четырех перспективных платформах: сверхпроводники, ионы, нейтральные атомы и фотоны

"Кирилл грозился обогнать Илью за один месяц", - задорно объявила Екатерина Солнцева, представляя собравшимся Илью Семерикова и Кирилла Лахманского. А когда в ответ смущенно замахали рукой, добавила: "Ну, хорошо - за два. Ведь обещал же…"

Выпускник МФТИ, а ныне научный сотрудник ФИАН Илья Семериков в декабре 2023 года стал лауреатом недавно учрежденной премии "Вызов" в номинации "Перспектива" за разработку 20-кубитного компьютера с использованием многоуровневых квантовых систем - кудитов.

Как он сам заявлял, его цель на ближайшие годы - создать масштабируемый квантовый компьютер, который позволил бы решать новые классы вычислительных задач, недоступные для классических компьютеров.

И вот теперь, если принимать на веру слова Екатерины Солнцевой, ему "на пятки" наступает Кирилл Лахманский - руководитель научной группы РКЦ "Масштабируемые ионные квантовые вычисления".

Наверное, в этом и состояла главная задача первой дорожной карты квантового проекта - создать среду, научное сообщество, наладить взаимополезный обмен и кооперацию там, где это необходимо. Сейчас в реализацию российского квантового проекта вовлечено более тысячи специалистов и ученых. Помимо упомянутых РКЦ и ФИАНа деятельно участвуют МГУ имени М.В. Ломоносова, исследовательские университеты МИСИС, МФТИ, другие научные центры. Развивая кооперацию и сохраняя специализацию, было важно исключить ненужный параллелизм, дублирование, распыление выделяемых целевым образом бюджетных и корпоративных средств. Об этом, с подачи Алексея Лихачева, тоже шел разговор на стратегической сессии.

Предметное обсуждение задач второго этапа квантового проекта на 2025 - 2030 годы проходило в закрытом от журналистов формате. Но самые общие позиции таковы. Всего направлений пять: квантовые вычисления, квантовые сенсоры, квантовые коммуникации, квантовый искусственный интеллект, нейроморфные вычисления. Ответственный за первые два направления - ГК "Росатом", за квантовые коммуникации - корпорация РЖД.

Ставится задача к 2030 году создать внелабораторный квантовый вычислитель и войти в топ-5 стран по мощности созданного у себя вычислителя (300 кубит). Ключевые ожидания на стадии производства, внедрения и коммерциализации квантовых технологий: опытное производство внелабораторных вычислителей, квантовые алгоритмы решают практические задачи, появляется коммерческая выручка, эффективность квантовых технологий получает общественное признание.

Как ожидается, одной из приоритетных сфер применения квантовых вычислений в будущем могут стать фармацевтика и медицина: появится возможность моделировать сложные молекулы при создании новых лекарств, получат развитие персонализированные медицинские технологии, позволяющие врачу в кратчайшие сроки разработать персональные рекомендации для лечения человека с учетом конкретных факторов его заболевания и особенностей организма.

Директор ФИАН и научный руководитель дорожной карты "квантовые вычисления" Николай Колачевский (в центре) обсуждает новые задачи с коллегами. Фото: Александр Емельяненков/РГ

Другое важное направление - транспорт и логистика. Составление оптимальных маршрутов и расписаний движения транспорта позволит решать проблемы пробок, а стихийно возникающие ограничения, например, из-за аварий, будут учитываться в режиме реального времени. В логистике применение квантовых вычислений облегчит, потенциально удешевит и ускорит доставку грузов по различным маршрутам.

Квантовые технологии способны вывести на принципиально новый уровень возможности искусственного интеллекта - например, в том, что касается машинного обучения, распознавания и анализа изображений, речи и текста, обработки больших данных.

В этой связи целевые ориентиры новой дорожной карты развития высокотехнологичной области "Квантовые вычисления" на 2025-2030 годы предлагается увязать с подходами к реализации квантового компонента нацпроекта "Экономика данных".

https://rg.ru/2025/02/09/v-muzee-atom-predstavili-itogi-realizacii-kvantovogo-proekta.html

11.02.25 08.02.2025 Комсомольская правда. От лекарств против рака до квантового компьютера: как наши ученые расширяют границы возможного

Разработанная российскими учеными вакцина против рака успешно прошла стадию доклинических испытаний

Разработанная российскими учеными вакцина против рака успешно прошла стадию доклинических испытаний
Фото: Иван МАКЕЕВ. Перейти в Фотобанк КП

В День российской науки KP.RU посмотрел, как наши ученые меняют представления о невозможном на пользу человеку и собрал 5 самых удивительных отечественных прорывов в науке.

1. Успехи в борьбе с раком: созданы два инновационных лекарства.

- Персонализированная мРНК-вакцина – разработана специалистами Центра имени Н.Ф. Гамалеи, Московского научно-исследовательского онкологического института имени П.А. Герцена и НМИЦ онкологии имени Н.Н. Блохина.

Главное: во время операции у пациента берут образец опухоли. Из этого образца извлекают всю необходимую генетическую информацию о раковых клетках, включая уникальные белки-антигены. С помощью системы искусственного интеллекта выбираются наиболее подходящие антигены, способные активировать иммунную систему для уничтожения опухоли. Затем создаются молекулы мРНК, которые кодируют эти антигены. Эти молекулы вводят пациенту через инъекцию под кожу, внутримышечно или внутривенно. Иммунная система распознает введенные антигены и начинает атаковать оставшиеся после операции раковые клетки и метастазы.

Основная задача вакцины — предотвратить появление метастазов и вывести пациента в устойчивую ремиссию – восстановление, желательно до конца жизни.

- Препарат из 4-х онколитических энтеровирусов - разработка Института молекулярной биологии имени В.А. Энгельгардта, испытания проходят в онкологическом Институте имени П.А. Герцена.

Главное: подобранные вирусы способны избирательно уничтожать раковые клетки из-за своего активного размножения внутри такой клетки. Онколитические вирусы меняют статус иммунной системы внутри опухоли и в ее микроокружении с иммуно-подавленного, на активный.

2. Синхротрон «СКИФ».

Идет строительство Центра коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ»), наукоград Кольцово, Новосибирская область.

Это масштабный научный комплекс: 34 здания и специализированные установки для передовых исследований с использованием синхротронного излучения (электромагнитные волны заряженных частиц). Завершение строительства запланировано уже на конец 2025 года.

Главное: синхротрон «СКИФ» откроет новые возможности для фундаментальных научных и исследований и практических разработок в таких областях, как химия, физика, материаловедение, биология, геология и гуманитарные науки, а также будет помогать развивать инновационное промышленное производство.

3. ИИ все ближе к мозгу человека.

Ученые из Московского физико-технического института (МФТИ), Университета Лобачевского и Южного федерального университета (ЮФУ) «вживили» модель ИИ нейронной сети мемристор — устройство, имитирующее синапс (соединение между нейронами). Мемристор может воспроизводить изменения в работе синапсов, которые происходят в мозге человека в процессе обучения и запоминания новой информации. Это достижение приближает искусственный интеллект к работе человеческого мозга.

Главное: ученые использовали математическое моделирование, чтобы проверить, возможно ли воспроизвести процессы, происходящие в мозге, с помощью мемристоров. Оказалось, что это возможно. Мемристоры могут изменять свое сопротивление в зависимости от протекающего через них тока. Этот эффект напоминает изменение проводимости синапсов в человеческом мозге под воздействием электрических импульсов, что стало важным шагом в направлении создания искусственного интеллекта, который работает по принципу биологического мозга.

ИИ все ближе к мозгу человека

ИИ все ближе к мозгу человека
Фото: Shutterstock.

4. Первый в мире препарат против болезни Бехтерева.

Минздрав РФ зарегистрировал российское лекарство против болезни Бехтерева - хронического воспалительного заболевания крестцово-подвздошных суставов и позвоночника.

Главное: в основе препарата моноклональное антитело. Оно может останавливать иммуновоспалительный процесс, а также, в перспективе, и развитие самой болезни.

5. 50-кубитный квантовый компьютер.

Чудо-машину разработали Научная группа Российского квантового центра (РКЦ) и Физического института им. П. Н. Лебедева РАН (ФИАН).

Главное: компьютер с 50 кубитами – это вычислительная мощь. Кубиты, в отличие от классических битов, могут находиться в суперпозиции состояний, а значит - решать задачи, недоступные для обычных умных машин. К тому же 50-кубитный КК может поделиться своими вычислениями через облачную платформу, что дает возможность тестировать квантовые алгоритмы без физического доступа к компьютерному телу, развивать образование и науку.

Главное: компьютер с 50 кубитами – это вычислительная мощь

Главное: компьютер с 50 кубитами – это вычислительная мощь
Фото: Shutterstock.

Какая польза: квантовые компьютеры могут решать задачи по управлению сложными системами, такими, в которых много меняющихся параметров. Например, предсказывать, будет или нет работать новое лекарство. Или прогнозировать изменения климата.

Кроме того, квантовые компьютеры могут моделировать сложные квантовые системы, что полезно в химии, в фармакологии, при разработке новых лекарств, при разработке новых материалов для космических технологий, например. А еще квантовые компьютеры могут разрабатывать новые методы защиты цифровых данных от взлома.

https://www.kp.ru/daily/27658.5/5046886/

05.02.25 06.02.2025 Телеграм-канал РАН. Делегация РАН на открытии Международного года квантовой науки и технологий

Делегация Российской академии наук приняла участие в открытии Международного года квантовой науки и технологий 4–5 февраля в Париже

Российскую академию наук на церемонии представили директор ФИЦ «Казанский научный центр РАН» член-корреспондент РАН Алексей Калачёв и руководитель Троицкого обособленного подразделения ФИАН им. П.Н. Лебедева РАН член-корреспондент РАН Андрей Наумов.

В 2025 году под эгидой ЮНЕСКО пройдут мероприятия по квантовым наукам, в том числе с участием РАН.

https://t.me/rasofficial/11468

 

04.02.25 04.02.2025 Российская академия наук. Дан старт Международному году квантовой науки и технологии

Делегация Российской академии наук приняла участие в торжественной церемонии открытия Международного года квантовой науки и технологии, прошедшей 4—5 февраля в штаб-квартире ЮНЕСКО в Париже (Франция).

Российскую академию наук на церемонии представили директор ФИЦ «Казанский научный центр РАН» член-корреспондент РАН Алексей Калачёв и руководитель Троицкого обособленного подразделения ФИАН им. П.Н. Лебедева РАН член-корреспондент РАН Андрей Наумов.

2025 год объявлен Организацией Объединённых Наций Международным годом квантовой науки и технологии в ознаменование 100-летия квантовой механики. С момента появления гипотез и теорий, утверждающих, что материя и энергия в микромире (на уровне отдельных атомов, электронов, фотонов) ведут себя удивительным образом, необъяснимым с помощью классических уравнений физики, к настоящему времени квантовая наука достигла впечатляющих успехов.

Многие современные технологии, устройства и инструменты основаны на квантовых принципах — в том числе лазеры (квантовые генераторы света), спутниковая навигация (ГЛОНАСС, GPS), телекоммуникационное оборудование, источники и детекторы света, устройства микроэлектроники, компьютеры и робототехника, энергетика, новые медицинские технологии.

Выдающиеся достижения в области квантовой науки и технологий отмечены многочисленными Нобелевскими премиями, среди которых яркое место занимают результаты российских и советских учёных — членов Академии наук. Впечатляющие перспективы обещают и современные разработки — квантовые вычислители, квантовые коммуникации и криптография, квантовая сенсорика.

Эти и целый ряд других научных вопросов обсудили в ЮНЕСКО представители нескольких десятков стран мира, в том числе Нобелевские лауреаты Анн Л’Юилье, Ален Аспе, иностранный член РАН Серж Арош, Уильям Филлипс, президент Международной комиссии по оптике профессор Эрик Розес, президент международного общества OPTICA иностранный член РАН Герхард Лёйхс и другие авторитетные учёные. Широко были представлены научные и общественные организации, национальные академии наук, профессиональные сообщества, научные издательства, инновационные компании. Торжественную церемонию открыла Лидия Брито — заместитель генерального директора ЮНЕСКО по естественным наукам.

Помимо фундаментальных результатов квантовой науки и инструментальных достижений квантовых технологий, особое внимание на проведённых в рамках церемонии открытия лекциях, панельных дискуссиях и круглых столах отводилось роли науки в устойчивом развитии международных отношений, образовании и воспитании. Также были затронуты вопросы смены технологического уклада в связи с появлением качественно новых технологий, новая философия. Так, в своём выступлении Алан Аспе отметил важность доведения результатов фундаментальных исследований до реального продукта, популяризации науки и научного метода. Учёный остановился на концепции «выхода» фундаментальной науки за пределы лабораторий благодаря различным инструментам популяризации научных знаний.

На встрече была отмечена важность проведения подобных мероприятий как для привлечения внимания к прорывным фундаментальным научным направлениям, так и в деле взаимовыгодного сотрудничества разных стран, решения сложных политических вопросов через установление международных научных контактов.

В течение 2025 года под эгидой ЮНЕСКО будут проводиться многочисленные мероприятия, посвящённые квантовым наукам и технологиям, в том числе при участии Российской академии наук. Важность развития квантовой науки и технологий в России неоднократно отмечалась на правительственном уровне и в профильном научном совете РАН.

https://new.ras.ru/activities/news/dan-start-mezhdunarodnomu-godu-kvantovoy-nauki-i-tekhnologii/

05.02.25 05.02.2025 Научная Россия. Новый способ борьбы с лекарственно устойчивыми инфекциями предложили в ФИАН

Передовая методика фотодинамической терапии с использованием витамина B2 в качестве фотосенсибилизатора помогает в лечении сложных ран, инфицированных патогенными микроорганизмами. В условиях роста числа антибиотикорезистентных инфекций данная разработка может найти широкое применение в медицине.

Процесс фотоактивации синим светом. Источник: ФИАН

Физический институт им. П.Н. Лебедева РАН (ФИАН) активно сотрудничает с медицинскими научными и клиническими организациями. Одним из ключевых партнеров ФИАН в данной области является Российский научный центр хирургии имени академика Б.В. Петровского. В Троицке находится одно из подразделений данной организации – Научно-клинический центр № 3 (бывшая Больница РАН). Научные сотрудники Троицкого обособленного подразделения ФИАН (ТОП ФИАН) совместно со специалистами РНЦХ им. акад. Б.В. Петровского разрабатывают новые приборы и методы для фотодинамической терапии, выполняют модификацию и апробацию в условиях клиники лазерных медицинских аппаратов, развивают новые методы неинвазивной оптической биомедицинской диагностики.

По словам руководителя ТОП ФИАН, чл.-корр. РАН А.В. Наумова, одним из важнейших результатов сотрудничества физиков и хирургов стала разработка нового метода фотодинамической терапии антибиотикорезистентных инфекций – полностью отечественной технологии, имеющей высокую социальную значимость.

«В условиях растущего числа устойчивых к антибиотикам микроорганизмов необходим поиск новых стратегий, направленных на инактивацию патогенов и предотвращение развития их резистентности к новым и существующим лекарственным препаратам. Слишком много людей принимают одни и те же антибиотики, в результате чего увеличивается заболеваемость лекарственно-устойчивыми инфекциями, включая актуальную проблему лечения инфицированных ран. Этот глобальный вызов требует поиска новых лекарственных препаратов или альтернативных терапевтических методов. Именно такой междисциплинарный подход и был реализован научной группой доктора физ.-мат. наук Евгения Хайдукова с коллегами», – подчеркнул Андрей Наумов.

Прибор для фотодинамической терапии. Источник: ФИАН

Совместный инициативный проект Физического института им. П.Н. Лебедева РАН, РНЦХ им. акад. Б.В. Петровского, РХТУ им. Д.И. Менделеева, Московского педагогического государственного университета и НИЦ «Курчатовский институт» направлен на разработку недорогой высокоэффективной технологии для профилактики и лечения контаминированных и инфицированных ран. В рамках проекта проходит апробацию технология антимикробной фотодинамической терапии с использованием витамина B2 в качестве фотосенсибилизатора. Клинические испытания метода доказали его эффективность и позволили существенно снизить летальность, а также сократить сроки лечения раневой инфекции у больных со стерномедиастинитом. Новый метод был успешно использован для лечения раненых в зоне СВО, дав возможность существенно купировать гнойно-некротические процессы, а также обеспечить сохранность конечностей с последующим выполнением реконструктивных операций. Успешная реализация проекта позволила не только создать эффективную терапевтическую технологию лечения ран, инфицированных патогенными микроорганизмами, но и заложила основы фотодинамической терапии следующего поколения, способной дать ответ на современные вызовы, связанные с ростом числа лекарственно устойчивых инфекций.

В Троицком обособленном подразделении Физического института Академии наук в течение последних нескольких лет активно ведутся научно-технические разработки в области медицинской физики и биофотоники. ТОП ФИАН имеет богатый опыт работ по спектральному приборостроению и медицинской лазерной технике. Широкое распространение в медицинских центрах России получили лазерные аппараты на парах меди «Яхрома-Мед», предназначенные для лечения пациентов с сосудистыми и пигментными дефектами кожи и слизистых оболочек методом селективной лазерной фотодеструкции. Среди актуальных научных направлений можно отметить разработку новых типов сенсоров для биологии и медицины, новые материалы и методы фотоники, SERS-спектроскопию, оптическую конфокальную и нелинейную микроскопию.

Информация и фото предоставлены отделом по связям с общественностью ФИАН
Источник фото: ФИАН

https://scientificrussia.ru/articles/novyj-sposob-borby-s-lekarstvenno-ustojcivymi-infekciami-predlozili-v-fian

04.02.25 04.02.2025 Московский часовой. Культурные площадки Москвы подготовили программу ко Дню российской науки

Программа начнется 6 февраля.

Музеи, библиотеки и культурные центры столицы проведут мероприятия ко Дню российской науки. Для гостей организуют различные мастер-классы, викторины и кинопоказы. Об этом рассказала заммэра Наталья Сергунина.

Программа начнется 6 февраля. 8 и 9 февраля в парке "Зарядье" пройдет фестиваль "Громкий голос российской науки", а на ВДНХ — серия познавательных занятий и экскурсий.

"Москвичи и туристы познакомятся с отечественными научными достижениями, послушают лекции ведущих ученых, посмотрят документальные фильмы, узнают больше о растениях и живых организмах. Приглашаем всех желающих", — отметила Сергунина.

Программа в "Зарядье"

На фестивале "Громкий голос российской науки" состоится интерактивное шоу. Гости познакомятся со свойствами азота. Они смешают газ с водой, сделают с его помощью мороженое, заморозят различные предметы и проверят их на хрупкость. Также можно будет принять участие в викторине, победители которой получат полезные призы Российского научного фонда.

В лектории выступят специалисты МГУ им. Ломоносова, ФИАН им. Лебедева и РХТУ им. Менделеева. Они поговорят о новых материалах, квантовых технологиях и мире животных. Слушатели узнают об использовании искусственного интеллекта, исследованиях Северного полюса и формировании экосистем.

Практические занятия посвятят биологическим исследованиям, изучению состава привычных продуктов и выбору безопасных бытовых средств. Всего пройдет 40 мастер-классов.  

ВДНХ расскажет о науке

В музее "Атом" на ВДНХ организуют более 10 мероприятий, в числе которых экскурсии, встречи со специалистами и познавательные занятия. Так, 8 февраля для посетителей всех возрастов пройдут инженерные активности, включая настольную игру. Также можно будет узнать об устройстве и работе атомной электростанции.

В центре "Космонавтика и авиация" 8 февраля объяснят, из чего делают ракетное топливо. Также посетители узнают о защите космических аппаратов от солнечных лучей, системе охлаждения станций и о том, как химические вещества упрощают жизнь на орбите.

В центре современных биотехнологий "Музей "Биотех" покажут документальные фильмы и проведут мастер-класс "Искусство в чашке Петри".

Программа музеев и библиотек

6 и 7 февраля библиотека № 82 приглашает на занятия об эволюции энергии — от костра до солнечных батарей. Юные гости создадут проект источника энергии будущего и коллаж.

6 февраля в Центральной детской библиотеке № 14 пройдет викторина по математике, физике и программированию. Участники вспомнят великих ученых и ответят на вопросы по алгебре, геометрии и теории чисел.

6–27 февраля культурный центр "Меридиан" представит выставку "История магнитной стрелки" с более чем 100 русскими компасами XIX–XX веков из коллекции Михаила Иванова.

В Государственном Дарвиновском музее 8 февраля пройдут встречи с экспертами, можно будет поучаствовать в интерактивных играх, а также мастер-классах, которые познакомят с динозаврами и их родственниками.

День российской науки отмечают ежегодно 8 февраля. Праздник приурочен к дате основания Российской академии наук — 28 января (8 февраля по новому стилю) 1724 года.

Фото: Пресс-служба Депкульта

https://moschas.ru/29059

04.02.25 03.02.2025 Минобрнауки России. Физики предложили новый способ производства изотопов для ядерной медицины

Исследователи из Томского государственного университета (ТГУ) и Физического института им. П.Н. Лебедева РАН (ФИАН) смоделировали технологию получения медицинских изотопов на протонном ускорителе «Прометеус», действующем на базе ФТЦ ФИАН (Протвино), основное назначение которого — протонная терапия онкологических заболеваний.

Ученые предложили использовать ускоритель для производства изотопов молибдена-99, который в свою очередь служит для получения технеция-99m — основного диагностического радионуклида современной ядерной медицины. В основе предлагаемой технологии — генерация нейтронов при прохождении протонного пучка через металлическую мишень и последующее облучение нейтронами пластинки из природного молибдена.

«Мы провели компьютерное моделирование этого процесса и показали, что при заданных характеристиках ускорителя «Прометеус» эффективность производства изотопов может быть очень высокой, особенно в отношении изотопа молибдена, — рассказал один из участников исследования, ведущий научный сотрудник лаборатории анализа данных физики высоких энергий ТГУ Владимир Иванченко. — Проведенное моделирование позволило определить ключевые параметры системы. Например, было установлено, что максимальная эффективность достигается при толщине мишени в 1 мм, это позволяет получить высокую производительность при минимальном расходе материала».

https://minobrnauki.gov.ru/upload/resize_cache/iblock/764/935_600_1/x2tdpziwxpyvw03p9pf1h261g8uh6gm9.jpg

Технология может быть использована не только для получения молибдена-99, но и других важных изотопов, например, лютеция-177 и рения-188, которые активно используются в лечении онкологических заболеваний.

Главное преимущество новой технологии — в ее универсальности. Установка позволяет совмещать производство изотопов с основными функциями ускорителя, в частности, терапевтическим использованием. Это делает возможным получение необходимых изотопов непосредственно на площадках лечебно-диагностических центров ядерной медицины, снижая логистические издержки и делая высокотехнологичную медицину доступнее.

Исследование выполнено в рамках масштабного проекта, поддержанного мегагрантом правительства РФ.

https://minobrnauki.gov.ru/press-center/news/nauka/94607/

Подкатегории