СМИ о нас

08.08.23 08.08.2023 Непросто. В России физики ФИАН проверили революционный корейский сверхпроводник

В России физики ФИАН проверили революционный корейский сверхпроводник

Российские ученые из ФИАН провели ряд экспериментов, чтобы проверить сверхпроводящие свойства полученных образцов. Оказалось, что ни один из них не обладает свойствами сверхпроводника при комнатной температуре и нормальном давлении. Оба образца проявляли электрическое сопротивление и не проводили ток без потерь, что противоречит заявлениям корейских ученых.

Также было выяснено, что в описанном корейцами синтезе использовались определенные химические реагенты, которые могут влиять на свойства получаемого материала. Российские ученые провели анализ их влияния и пришли к выводу, что использование этих реагентов может привести к образованию стеклообразной массы, которая не является сверхпроводником.

Таким образом, результаты исследования российских ученых опровергают заявления корейских ученых о создании сверхпроводника LK-99, способного работать при комнатной температуре и нормальном давлении. Это открытие вызвало огромный интерес и надежды на новые технологические прорывы, однако оказалось, что оно не соответствует действительности. 

Такие случаи подчеркивают важность проверки и повторяемости научных исследований. Необходимо быть осторожными и критически оценивать новые открытия, особенно если они обещают революцию в науке и технологиях. В данном случае, хотя исследование корейских ученых вызвало фурор в мировой научной общественности, его результаты не были подтверждены независимыми исследователями.

Несмотря на разочарование, такие неудачные попытки необходимы для научного прогресса. Они помогают уточнить и расширить наши знания, а также позволяют избежать ошибок и ложных надежд. Возможно, в будущем ученые найдут другие способы создания сверхпроводников при комнатной температуре и нормальном давлении, что приведет к новым прорывам в науке и технологиях.

 Сверхпроводники — это материалы, которые могут проводить электрический ток без сопротивления или с очень низким сопротивлением при очень низких температурах. Это явление, известное как сверхпроводимость, было открыто в 1911 году голландским физиком Хейке Камерлингхом Оннесом.

Основной характеристикой сверхпроводников является критическая температура, ниже которой они становятся сверхпроводящими. Критическая температура может быть очень низкой, например, для некоторых сверхпроводников на основе металлов она составляет всего несколько градусов выше абсолютного нуля (-273,15°C), в то время как для некоторых новых сверхпроводников на основе соединений между элементами она может достигать комнатной температуры.

Сверхпроводники обладают рядом уникальных свойств, которые делают их полезными во многих областях науки и техники. Одно из главных преимуществ сверхпроводников — отсутствие потерь энергии при передаче электрического тока, что позволяет создавать эффективные и экономичные электрические системы. Это может быть особенно полезно в энергетике, где сверхпроводники могут увеличить эффективность передачи электроэнергии.

Кроме того, сверхпроводники также обладают сильным магнитным полем, что делает их полезными для создания мощных магнитов в медицинской технике, научных исследованиях и промышленности. Они также находят применение в квантовых компьютерах, где сверхпроводящие кубиты используются для хранения и обработки информации.

Однако, сверхпроводники имеют и некоторые ограничения. Они требуют очень низких температур для своей работы, что усложняет их применение в повседневной жизни. Кроме того, некоторые сверхпроводники могут быть очень хрупкими и сложными в производстве, что ограничивает их применение в некоторых областях.

Тем не менее, сверхпроводники все еще являются активной областью исследований, и ученые постоянно работают над разработкой новых материалов и технологий для расширения их применения. В будущем, сверхпроводники могут стать ключевым элементом в различных технологиях, от энергетики до информационных систем.

https://neprosto.fun/archives/34518

08.08.23 08.08.2023 Рамблер. В ФИАН опровергли работоспособность открытого в Корее сверхпроводника LK-99

В России раскритиковали корейские сверхпроводники

Российские учёные попытались воспроизвести опыт корейских коллег с сверхпроводниками, но потерпели неудачу

В Южной Корее разработан сверхпроводящий материал LK-99, который обещал проводить электричество без потерь при обычных условиях, при проверке оказался как бы изолятором. О такой неожиданной неудаче сообщили в Физическом институте имени П. Н. Лебедева РАН (ФИАН).

Исследование, опубликованное в июле 2023 года, рассказывало о сверхпроводнике, который должен был работать при комнатной температуре и давлении, избегая необходимости охлаждения. Однако другие научные группы не смогли повторить результаты корейских коллег. Они обнаружили, что LK-99 на самом деле не проводит ток и ведёт себя как изолятор, даже если попытаться создать электрическую цепь.

Кирилл Перваков, учёный из ФИАН, подчеркнул, что результаты корейских исследователей вызывают сомнения, так как материал не соответствует свойствам настоящих сверхпроводников. Он добавил, что, возможно, опубликованная статья содержит неточности или ошибки, что может объяснить такой непредвиденный исход.

Наука и техника, РАН 

https://news.rambler.ru/tech/51204610-v-fian-oprovergli-rabotosposobnost-otkrytogo-v-koree-sverhprovodnika-lk-99/

07.08.23 07.08.2023 Московский Комсомолец. Российские ученые ищут подтверждение сенсации о достижении высокотемпературной сверхпроводимости

«Эксперимент идет, мы зарядили несколько образцов, проверяем»

Сверхпроводник, который позволил бы всем нам создать линии электропередач, передающие электроэнергию без потерь, и левитирующие высокоскоростные поезда без трения, все-таки пока не найден. О создании подобного материала (а это стало бы одним из величайших технологических прорывов) заявили две недели назад корейские ученые из Исследовательского центра в Сеуле.

«Эксперимент идет, мы зарядили несколько образцов, проверяем»
Левитация немагнитного материала LK-99 в магнитном поле. Фото: Соцсети

Российские ученые Физического института им. Лебедева РАН решили повторить их эксперимент. Спустя несколько дней после его начала в интервью «МК» они сообщили, что пока не достигли заявленного корейцами результата, но измерения еще продолжаются. К слову, о том, что материал корейцев, мягко говоря, не тянет на сверхпроводник при комнатной температуре, сообщили в конце прошлой недели и несколько зарубежных исследователей. Учитывая большой интерес к теме сверхпроводников, мы решили разобраться, что это такое и что необходимо для их появления.

Сначала о том, что такое обычный сверхпроводник. Согласно учебнику физики, это материал, электрическое сопротивление которого при понижении температуры до значительной величины становится равным нулю согласно эффекту Мейснера.

Сегодня технология применяется для создания мощных магнитов, к примеру, в Большом адронном коллайдере, современных моторов в судостроении, мощных электродвигателей. В большинстве случаев пока это только экспериментальные установки, где стоят устройства, охлаждающие до температуры, граничащей с абсолютным нулем, или температуры жидкого азота, что делает конструкции очень дорогостоящими. Создать сверхпроводник, не требующий мощных «холодильников», — вот давняя мечта многих физиков.

Одной из главных их целей являются модернизация электросетей. Если бы из сверхпроводящих материалов были сделаны всем нам знакомые электрические провода, это позволило бы сэкономить до 30 процентов энергии. Экономическая выгода была бы колоссальной, сравнимой разве что с термоядерной электростанцией ИТЭР, над которой долгие годы работают, но пока безуспешно, ученые-ядерщики.

Сверхпроводимость при комнатной температуре позволила бы также создавать более доступные, неохлаждаемые квантовые компьютеры, левитирующие поезда на магнитной подушке, движущиеся на огромной скорости… Сегодня такие технологии уже создаются, но исключительно в опытном режиме. То есть так называемый эффект Мейснера, заключающийся в том, что магнитное поле вытесняется из объема проводника при его переходе в сверхпроводящее состояние, пока не получается широко реализовать на практике без мощного охлаждения.

И вот 25 июля ученые Сукбэ Ли и Джи-Хун Ким из фирмы Quantum Energy Research Centre в Сеуле сообщили в препринтном журнале (предваряющем основную публикацию), что нашли соединение меди, свинца, фосфора и кислорода, получившее название LK-99, которое как раз и является сверхпроводником при нормальном давлении окружающей среды и температурах до 127°C (400 кельвинов), то есть и при «обычной» комнатной температуре.

Эта статья вызвала много шума в научном мире, поскольку заявленные результаты граничили с революцией. Многие научные группы в разных странах в срочном порядке принялись за экспериментальную проверку этого результата. Не остались в стороне и российские специалисты из Физического института им. Лебедева РАН.

— Мы не собираемся спешить с выводами, — говорит доктор физико-математических наук, член-корреспондент РАН, руководитель Центра высокотемпературной сверхпроводимости и квантовых материалов им. В.Л.Гинзбурга ФИАН Владимир Пудалов. — Эксперимент идет, мы зарядили несколько образцов, проверяем. В препринте корейцев была какая-то неточность в химическом составе и неясность и даже противоречие в результатах, просто концы с концами не сходились.

Нам же удалось создать похожий на их свинцовый апатит материал. Пока данных о его сверхпроводимости при комнатной температуре и обычном атмосферном давлении нет, но мы не торопимся с окончательными выводами. Даже если ее там не окажется, научный интерес может представлять проводимость при 100 кельвинах. Если хотя бы это будет доказано, то довольно бюджетный LK-99 сможет заменить многие дорогие сверхпроводники.

По словам ученого, сверхпроводимость при температуре, «близкой» к комнатной, была достигнута в 2019–2020 годах почти одновременно многими научными группами, включая российских исследователей из ФИАНа. Она возникала уже при -17…-20 градусах Цельсия, и это среди подтвержденных данных — абсолютный рекорд. Но… при давлении, сравнимом с давлением в земном ядре, — примерно в 1–1,5 миллиона атмосфер. При нормальном — сверхпроводник почти мгновенно разлагался на составляющие.

Исследования продолжаются. Результаты станут доказательством правильности пути достижения высокотемпературной сверхпроводимости. «МК» следит за развитием событий.

https://www.mk.ru/science/2023/08/07/rossiyskie-uchenye-ishhut-podtverzhdenie-sensacii-o-dostizhenii-vysokotemperaturnoy-sverkhprovodimosti.html

08.08.23 08.08.2023 Газета.Ru. Российские физики проверили «революционный» корейский сверхпроводник. Он оказался изолятором

В ФИАН опровергли работоспособность открытого в Корее сверхпроводника LK-99

Фальшивое видео левитации LK-99, выложенное на фальшивом канале ИФПМ СО РАН

Когда в июле южнокорейские ученые сообщили об открытии сверхпроводника, способного работать при комнатной температуре и нормальном давлении, это произвело фурор. Треды в Twitter о сверхпроводнике LK-99 собрали десятки миллионов просмотров. Еще бы! Этот материал мог бы перевернуть нашу жизнь, — например, с его помощью легко было бы соединить города линиями с летающими поездами. Однако российские ученые, решившие повторить исследования корейцев, выяснили, что изобретенный ими чудо-сверхпроводник ведет себя как кусок фарфора и вообще не проводит ток. О результатах опытов они рассказали «Газете.Ru».

Откуда взялся чудо-сверхпроводник при комнатной температуре

Впервые о новом материале, названном LK-99, стало известно 22 июля, когда на сервис arxiv.org выложили препринт научной статьи с его описанием. Коллектив авторов возглавлял Ли Сукбэ, ранее практически никому не известный физик из корейского Центра исследований квантовой энергии (QSERF). Ученые утверждали, что полученный ими LK-99 ведет себя как сверхпроводник при комнатной температуре и нормальном давлении, то есть способен пропускать через себя ток без сопротивления, потерь и нагрева. В случае подтверждения это открытие сулило бы настоящий переворот во всех отраслях, связанных с электроникой, и даже Нобелевская премия по физике или химии была бы для авторов недостаточной наградой. Все используемые в наши дни сверхпроводники требуют либо охлаждения жидким азотом или гелием, либо давления в миллионы атмосфер. Для выполнения любого из этих условий требуется дорогое и сложное оборудование, и потому сверхпроводники используются лишь в редких образцах техники вроде аппаратов МРТ.

Особенно важно, что LK-99 — дешевый материал, который можно синтезировать из распространенного сырья в рядовой химической лаборатории. Для этого требуется оксид свинца, сульфат свинца, медь и фосфор, а на выходе должно получиться соединение оксида и фосфата свинца с формулой Pb10-xCux(PO4)6O. Описанный корейцами синтез легко проводить в промышленных масштабах, так что LK-99 и впрямь имел все шансы заменить медь во многих бытовых приборах. Это позволило бы, например, избавиться от потерь в электросетях, создать гораздо более мощные компактные электродвигатели, многократно удешевить аппараты МРТ и сделать обыденностью летающие поезда на магнитной подушке — маглевы.

Несмотря на десятки и сотни миллионов просмотров у новостей о LK-99, коллеги-физики восприняли открытие с чрезвычайным скепсисом. Новый сверхпроводник был совсем не похож на ранее известные аналогичные материалы, вел себя странно даже в поставленных авторами экспериментах, а уравнения реакции содержали грубые ошибки. Наконец, это исследование не было опубликовано в рецензируемом журнале, а лишь выложено в бесплатный сервис. В Физическом институте имени П.Н. Лебедева РАН (ФИАН) решили проверить, действительно ли LK-99 способен проводить ток без потерь.

Как проводили проверку LK-99

Проблема возникла еще до начала эксперимента. По оценке специалистов Центра высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга ФИАН, если взять описанное корейцами сырье и повторить их процедуру синтеза, получится материал с другой формулой, отличной от указанной в статье. Поэтому проверку проводили двумя путями.

В одной серии опытов в точности воспроизвели описанный корейцами рецепт, в другой — получили вещество с указанной конечной формулой, но правильным методом. Для этого пришлось изменить сырье и ход реакции. В результате ученые получили два похожих между собой образца — темные поликристаллы антрацитового цвета. При этом полученный по корейскому рецепту материал состоял из двух фракций — вместе с поликристаллом образовывалась зеленая стеклообразная масса, которую авторы изобретения никак не упоминали. Поскольку на фотографиях корейского образца ничего похожего не видно, российские специалисты попросту очистили от нее материал.

Для измерения сопротивления материала на образцах закрепили четыре контакта: через два крайних пускали ток, а между двумя центральными измеряли напряжение. Если бы материал был сверхпроводником, то напряжение между двумя точками было бы равно нулю. Две версии LK-99 поместили в криостат («морозильник») со встроенным магнитом — мощное магнитное поле подавляет сверхпроводимость, в результате чего она возникает лишь при более низкой температуре. Наблюдение этого феномена считается дополнительным доказательством при открытии сверхпроводников.

«Эксперимент показал, что корейский «сверхпроводник» в действительности — изолятор. Вы даете туда ток, — и ничего не происходит. Причем мы начали опыты при комнатной температуре (23 °C), в то время как, по версии авторов разработки, сверхпроводимость фиксируется при температуре от 125 °C и ниже. Если же образцы охлаждать до отрицательных температур — сопротивление (и так условно бесконечное) лишь растет. По электрическим свойствам LK-99 похож на фарфор, из которого делают промышленные изоляторы»,

— рассказал «Газете.Ru» Кирилл Перваков, один из ученых Центра.

При этом образцы материала, полученные двумя путями, ведут себя практически одинаково. Они не реагируют на магнит, в то время как сверхпроводники всегда должны от него отталкиваться и вести себя как идеальный диамагнетик.

Левитация диамагнетика (пиролитического углерода) над неодимовым магнитом. Wikimedia Commons

Физики провели рентгеноструктурный анализ LK-99, который позволяет выяснить, как именно расположены атомы в кристалле и с каким материалом они имеют дело. К удивлению специалистов, результаты исследования обоих образцов практически совпали с теми данными, которые приводят корейские авторы. Иными словами, Ли Сукбэ и его коллеги и впрямь провели похожий синтез, в то время как некоторые ученые подозревали их в откровенной фальсификации.

Могут ли российские физики ошибаться

У ученых есть серьезные претензии к качеству статьи корейских авторов. Их описание скудное и неполное (что в научном мире всегда вина авторов), и потому в ФИАН не готовы ручаться, что воспроизвели эксперимент в точности. Китайские исследователи из Хуачжунского университета науки и технологий также попытались воспроизвести LK-99 по методу, описанному в оригинальной статье. Они не измеряли сопротивление полученного образца, а лишь проверяли, является ли он диамагнетиком. Оказалось, что одно из зернышек полученного образца, более чистое и лучше легированное медью, проявляет диамагнитные свойства при температуре более 100 °C и почти способно левитировать в магнитном поле (приподнимается над столом и встает на ребро). Однако к магнитной левитации способен и пиролитический графит, который не является сверхпроводником, а в очень сильных полях левитируют даже живые лягушки.

https://www.gazeta.ru/science/2023/08/08/17384882.shtml

27.09.23 27.09.2023 Глобальная энергия. Российские ученые повысили эффективность светодиодов с помощью фтора

Эффективность свечения металлорганических комплексов, используемых в органических светодиодах, можно повысить с помощью фтора. Такой вывод сделали ученые из Физического института имени П.Н. Лебедева РАН и Института спектроскопии РАН по итогам экспериментов, которые показали, что соединения с тринадцатью атомами фтора в два раза эффективнее преобразуют подаваемую на них энергию в свет, чем соединения с двумя атомами фтора. Это наблюдение позволит создать экономичные и эффективные светодиоды для бытовой техники и наноизлучателей. Результаты исследования опубликованы в журнале Dyes and Pigments.

Российские ученые повысили эффективность светодиодов с помощью фтора
Источник фото — rscf.ru

Органические или OLED-светодиоды широко используются в технике. Например, дисплеи на их основе применяются в смартфонах, телевизорах и цифровых фотоаппаратах. Излучение OLED обусловлено органическими соединениями или комплексами с металлами, которые при действии электрического тока или внешнего света начинают люминесцировать, т.е. самостоятельно светиться в определенном диапазоне. Наиболее перспективными светоизлучающими материалами для OLED-светодиодов являются соединения ионов металлов с β-дикетонами — кислородсодержащими органическими молекулами. Они удобны тем, что цвет и интенсивность их свечения можно менять на этапе синтеза. Однако такие комплексы имеют довольно низкую эффективность люминесценции: лишь небольшая часть поступающей на них энергии преобразуется в излучение, тогда как большая часть – рассеивается в виде тепла.

Более ранние исследования показали, что исправить эту проблему можно за счет введение в состав молекулы атомов фтора. Основываясь на этом выводе, ученые из Физического института имени П. Н. Лебедева РАН и Института спектроскопии РАН синтезировали полифторированные комплексы β-дикетонов с ионом европия — металла из группы лантаноидов (химических элементов, которые применяются в медицине при изготовлении противовоспалительных средств). Соединения различались количеством атомов фтора: в каждой из трех органических молекул-лигандов, окружающих центральный ион европия, их было три, четыре, семь или тринадцать.

Чтобы оценить влияние атомов фтора на люминесценцию комплексов, авторы исследования освещали растворы соединений очень короткими импульсами лазерного излучения, а также измеряли эффективность излучения и в молекулах комплексов. В результате выяснилось, что увеличение числа атомов фтора в молекуле приводит к значительному росту эффективности свечения. Например, комплексы, содержащие тринадцать атомов фтора, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами фтора. Ученым тем самым удалось повысить квантовый выход люминесценции до 56%, что сопоставимо с лучшими представителями этого класса материалов.

«Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, значительная потребность в которых существует в современной быстро развивающейся технике. В дальнейшем мы планируем расширить область исследования фторсодержащих комплексных соединений на другие ионы лантаноидов, чтобы научиться направленно создавать эффективные люминесцентные материалы с заданными свойствами», – цитирует Российский научный фонд одного из авторов исследования, доктора химических наук Илью Тайдакова.

https://globalenergyprize.org/ru/2023/10/05/rossijskie-uchenye-povysili-jeffektivnost-svetodiodov-s-pomoshhju-ftora/

27.09.23 27.09.2023 Время электроники. В ФИ РАН удвоили КПД свечения молекул для органических светодиодов

Исследователи заменили молекулы водорода в соединениях, лежащих в основе диодов, на большое число молекул фтора, что позволило значительно повысить эффективность люминесценции.

Российские ученые обнаружили, что эффективность свечения молекул на базе соединений европия, пригодных для создания органических светодиодов (OLED), можно удвоить, если внедрить в их состав большое количество атомов фтора. Об этом сообщила пресс-служба Российского научного фонда (РНФ). Исследование опубликовано в журнале Dyes and Pigments.

«Мы экспериментально доказали, что увеличение числа атомов фтора позволяет в два раза повысить эффективность люминесценции рассматриваемых соединений европия. Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, потребность в которых существует в современной быстро развивающейся технике», — пояснил ведущий научный сотрудник Физического института РАН (Москва) Илья Тайдаков, чьи слова приводит пресс-служба РНФ.

Тайдаков и его коллеги изучали физические свойства соединений бета-дикетонов, кислородосодержащих органических молекул, и редкоземельного металла европия. Как и другие типы материалов, применяемых при создании органических светодиодов, эти вещества отличаются относительно низким КПД — эффективностью действия относительно энергозатрат.

Низкая эффективность работы этих излучателей, как объясняют российские физики, связана с наличием множества высокоэнергетических связей между атомами углерода и водорода в их молекулах. Исследователи решили выяснить, как замена разного числа атомов водорода на фтор в молекулах бета-дикетонов и других органических соединений, окружающих ионы европия, повлияла на эффективность их свечения.

В общей сложности ученые изучили свойства шести вариаций соединений европия с органикой, и обнаружили, что молекулы, содержащие 13 атомов фтора, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами этого элемента. По уровню КПД они не уступали лучшим представителям этого класса материалов.

Как отмечается в сообщении, разработанные соединения могут успешно применяться в качестве источников красного света для электролюминесцентных устройств. Кроме того, физики предполагают, что схожими свойствами должны обладать другие соединения органики и редкоземельных металлов, что открывает дорогу для создания целого класса высокоэффективных органических светодиодов.

Первые органические светодиоды были созданы еще в конце 1980-х годов, однако они начали массово использоваться в технике и промышленности лишь на рубеже веков. Сейчас их прменяют как для создания осветительных приборов, так и компонентов электронных гаджетов, в частности дисплеев. OLED-устройства отличаются высокой контрастностью, небольшими габаритами и гибкостью. Более широкому использованию пока мешает недолговечность органических светодиодов, а также относительно низкий КПД.

https://russianelectronics.ru/2023-09-27-phyran/

27.09.23 27.09.2023 Хабр. Физики из России удвоили КПД свечения молекул для органических светодиодов

Российские учёные обнаружили, что эффективность свечения молекул на базе соединений европия, пригодных для создания органических светодиодов (OLED), можно удвоить, если внедрить в их состав большое количество атомов фтора. Результаты исследования, поддержанного Российским научным фондом (РНФ), опубликованы в журнале Dyes and Pigments.

Люминесценция новых комплексов в растворе. Источник: Илья Тайдаков.

«Мы экспериментально доказали, что увеличение числа атомов фтора позволяет в два раза повысить эффективность люминесценции рассматриваемых соединений европия. Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, потребность в которых существует в современной быстро развивающейся технике», — пояснил ведущий научный сотрудник Физического института РАН (Москва) Илья Тайдаков.

Илья Тайдаков и его коллеги изучали физические свойства соединений бета-дикетонов, кислородосодержащих органических молекул, и редкоземельного металла европия. Как и другие типы материалов, применяемых при создании органических светодиодов, эти вещества отличаются относительно низким КПД — эффективностью действия относительно энергозатрат.

Низкая эффективность работы этих излучателей, как объясняют российские физики, связана с наличием множества высокоэнергетических связей между атомами углерода и водорода в их молекулах. Исследователи решили выяснить, как замена разного числа атомов водорода на фтор в молекулах бета-дикетонов и других органических соединений, окружающих ионы европия, повлияла на эффективность их свечения.

В общей сложности учёные изучили свойства шести вариаций соединений европия с органикой и обнаружили, что молекулы, содержащие 13 атомов фтора, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами этого элемента. По уровню КПД они не уступали лучшим представителям этого класса материалов.

Как отмечается в сообщении, разработанные соединения могут успешно применяться в качестве источников красного света для электролюминесцентных устройств. Кроме того, физики предполагают, что схожими свойствами должны обладать другие соединения органики и редкоземельных металлов, что открывает дорогу для создания целого класса высокоэффективных органических светодиодов.

Первые органические светодиоды были созданы ещё в конце 1980-х годов, однако они начали массово использоваться в технике и промышленности лишь на рубеже веков. Сейчас их применяют как для создания осветительных приборов, так и компонентов электронных гаджетов, в частности дисплеев. OLED-устройства отличаются высокой контрастностью, небольшими габаритами и гибкостью. Более широкому использованию пока мешает недолговечность органических светодиодов, а также относительно низкий КПД.

https://habr.com/ru/news/763650/

26.09.23 26.09.2023 Вести. Российские ученые удвоили яркость органических светодиодов
Российские ученые обнаружили способ заставить органические светодиоды (OLED) на основе соединений европия светить ярче. Как выяснилось, добавление определенного количества атомов фтора в эти соединения может увеличить эффективность их свечения в два раза.

Ученые Физического института РАН под руководством ведущего научного сотрудника Ильи Тайдакова изучали соединения бета-дикетонов, которые являются кислородосодержащими органическими молекулами, в сочетании с ионами европия. Они заметили, что замена атомов водорода на фтор в молекулах этих соединений существенно повысила эффективность свечения.

Наиболее эффективными оказались молекулы, содержащие тринадцать атомов фтора: они преобразовывали свет в излучение в два раза эффективнее, чем молекулы с тремя такими атомами.

Это открытие может иметь важное значение для разработки высокоэффективных OLED-светодиодов, которые используются в различных электронных устройствах и осветительных системах. Такие светодиоды могут стать более эффективными и долговечными благодаря новому подходу, что продвинет технологии освещения и дисплеев.

Ранее сообщалось, что инженеры создали светодиоды, способные одновременно излучать и поглощать свет. Это позволит экранам "почувствовать" тень от руки человека и отреагировать на такой бесконтактный жест.

https://www.vesti.ru/hitech/article/3570296

26.09.23 26.09.2023 Научная Россия. Характеристиками белых светодиодов можно будет управлять, варьируя металл в их составе

Российско-итальянская группа ученых представила новые металл-органические соединения, обладающие сине-зеленым свечением. Его характеристиками можно управлять, варьируя в таких комплексах атом металла, с которым связаны органические молекулы, или лиганды. Такое «соседство» лиганда и металла позволило авторам повысить интенсивность свечения соединений почти в 40 раз в сравнении с исходной органической молекулой. Данная технология позволит разработать новое поколение органических светодиодов белого цвета свечения, имеющих существенно более низкую стоимость, чем известные на данный момент устройства. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы в International Journal of Molecular Sciences.

Люминесценция координационных соединений лантаноидов под действием УФ-излучения. Источник: Илья Тайдаков

Белые органические светодиоды считаются наиболее экономичными источниками света, используемыми для уличного, бытового и дисплейного освещения. В таких устройствах белый свет формируется за счет нескольких люминофоров, излучающих в синей, зеленой и красной спектральных областях. В основе одного из наиболее популярных классов материалов для  органических светодиодов лежат комплексы сложных органических молекул с металлами платиновой группы. Такие излучатели высокоэффективны, но очень дороги в производстве, а потому использовать массово их может быть невыгодно, особенно учитывая непрерывный рост цен на платиновые металлы.

В своей новой работе исследователи из Физического института имени П.Н. Лебедева РАН (Москва) вместе с российскими и итальянскими коллегами создали люминофоры на основе гетероциклических β-дикетонов — органических молекул, в которых две карбонильные кислород-содержащие группы разделены одним атомом углерода (метиленовой группой), и также имеются циклические фрагменты, содержащие атомы углерода и азота. Такие соединения легко образуют люминесцирующие комплексы с рядом металлов.

Интерес к таким молекулам обусловлен тем, что характеристиками их излучения, например, яркостью и цветом, можно легко управлять, внося небольшие изменения в структуру молекулы.

Однако такие β-дикетоны имеют крайне низкую эффективность люминесценции, поскольку преобразуют в свет всего 0,5% поступающей на них световой или электрической энергии. Остаток рассеивается в виде тепла. Улучшить люминесцентные характеристики таких молекул можно, соединив их в комплекс с металлами. В зависимости от типа металла особым образом может меняться энергетическая структура β-дикетонов и даже тип люминесценции.

Авторы предложили две серии новых комплексных соединений металлов с β-дикетонами. Первая включала металлы третьей группы таблицы Менделеева (скандий, лантан, гадолиний и лютеций), а вторая — тринадцатой группы (алюминий, галлий и индий). Объединив β-дикетоны с этими элементами в комплексы, ученые смогли управлять возбужденным состоянием органических молекул, а именно варьировать значения энергий возбужденных состояний таких молекул и их время жизни. Кроме того, экспериментально было показано, что все полученные комплексы обладали сине-зеленым свечением, а эффективность люминесценции для соединений на основе β-дикетонов с лантаном достигла 19,5%, то есть стала почти в 40 раз больше, чем у исходной органической молекулы, не связанной с металлом.

«Наши комплексы имеют высокий потенциал в качестве светоизлучающего слоя для создания новых белых органических светодиодов. Достаточная яркость их люминесценции и низкая стоимость синтеза позволяют надеяться, что подобные материалы можно будет использовать в прототипах светодиодных источников света. В наших ближайших планах — начать лабораторное тестирование таких образцов», — рассказывает руководитель проекта, поддержанного РНФ, Илья Тайдаков, доктор химических наук, руководитель лаборатории «Молекулярная спектроскопия люминесцентных материалов» Отдела спектроскопии ФИАН.

В работе также приняли участие исследователи из Национального исследовательского университета «Высшая школа экономики» (Москва), Института общей и неорганической химии имени Н.С. Курнакова РАН (Москва), Московского государственного университета имени М.В. Ломоносова (Москва) и Университета города Камерино (Италия).

https://scientificrussia.ru/articles/harakteristikami-belyh-svetodiodov-mozno-budet-upravlat-varirua-metall-v-ih-sostave

26.09.23 26.09.2023 InScience. «Насытившиеся» фтором молекулы для OLED-светодиодов стали светиться в два раза ярче

Повысить эффективность свечения металлоорганических комплексов, используемых в OLED-светодиодах, можно, введя в молекулу большое количество атомов фтора. К такому выводу ученые пришли на основе экспериментов, которые показали, что соединения с тринадцатью атомами фтора в два раза эффективнее преобразуют подаваемую на них энергию в свет, чем те, что содержат только четыре атома фтора. Это наблюдение позволит создать более энергоэкономичные и эффективные светодиоды для бытовой техники и наноизлучателей. Результаты исследования, поддержанного Российским научным фондом, опубликованы в журнале Dyes and Pigments.

Илья Тайдаков

OLED-светодиоды широко используются в технике. Например, дисплеи на их основе применяются в смартфонах, цифровых фотоаппаратах, автомобильных бортовых компьютерах и телевизорах. Излучение OLED обусловлено органическими соединениями или их комплексами с металлами, которые при действии электрического тока или внешнего света начинают самостоятельно светиться в определенном диапазоне — люминесцировать. В качестве светоизлучающих материалов для OLED-светодиодов перспективны соединения ионов металлов с β-дикетонами — кислородсодержащими органическими молекулами. Они удобны тем, что цвет и интенсивность их свечения можно менять на этапе синтеза. Однако такие комплексы имеют довольно низкую эффективность люминесценции: большая часть поступающей на них энергии (световой или электрической) рассеивается в виде тепла, а в излучение преобразуется лишь около нескольких процентов. Исследования показали, что исправить ситуацию помогает введение в состав комплексов атомов фтора.

Ученые из Физического института имени П. Н. Лебедева РАН (Москва), Института спектроскопии РАН (Москва) с коллегами из Бразилии синтезировали и подробно исследовали свойства шести ранее неизвестных полифторированных комплексов β-дикетонов с ионом европия — металла из группы лантаноидов. Соединения различались длиной фторированной углеродной цепи в органической молекуле, то есть количеством атомов фтора. В каждой из трех органических молекул-лигандов, окружающих центральный ион европия, их было три, четыре, семь или тринадцать.

Чтобы оценить влияние атомов фтора на люминесценцию комплексов, авторы освещали растворы соединений очень короткими импульсами лазерного излучения и измеряли эффективность излучения и динамику переходных процессов в молекулах комплексов. Оказалось, что увеличение числа атомов фтора в молекуле приводит к значительному росту эффективности свечения. Так, комплексы, содержащие тринадцать атомов этого элемента, преобразовывали падающий на них свет в собственное излучение в два раза эффективнее, чем молекулы с тремя атомами фтора. Таким образом, авторам удалось повысить квантовый выход люминесценции до 56%, что сопоставимо с лучшими представителями данного класса материалов. Синтезированные соединения имеют хороший потенциал для использования в качестве излучателей красного свечения для различных электролюминесцентных устройств.

Экспериментальные результаты также были подтверждены комплексом расчетных методов. Квантово-химические расчеты показали, что в комплексах с большим числом атомов фтора быстрее происходит перенос энергии между металлом и органической молекулой. Это приводит к тому, что энергия, подаваемая на соединение извне, преобразуется в свечение более эффективно.

«Мы экспериментально доказали, что увеличение числа атомов фтора позволяет в два раза повысить эффективность люминесценции рассматриваемых координационных соединений европия. Полученные соединения могут быть полезны при разработке высокоэффективных светоизлучающих устройств, значительная потребность в которых существует в современной быстро развивающейся технике. В дальнейшем мы планируем расширить область исследования фторсодержащих комплексных соединений на другие ионы лантаноидов, чтобы научиться направленно создавать эффективные люминесцентные материалы с заданными свойствами», — рассказывает руководитель проекта, поддержанного грантом РНФ, Илья Тайдаков, доктор химических наук, руководитель лаборатории «Молекулярная спектроскопия люминесцентных материалов» отдела спектроскопии ФИАН.

https://inscience.news/ru/article/russian-science/14395

Подкатегории