СМИ о нас

07.02.24 06.02.2024 Волга Ньюс. В Самаре состоялось торжественное мероприятие к Дню российской науки и 300-летию РАН

Во вторник, 6 февраля, губернатор Дмитрий Азаров принял участие в мероприятиях в преддверии Дня российской науки. Торжественная часть прошла в Самарской государственной филармонии, где собрались представители научной общественности региона: академики, члены-корреспонденты, научные сотрудники организаций Российской академии наук, профессорско-преподавательский состав и молодые ученые ведущих вузов региона, инженеры и конструкторы промышленных предприятий Самарской области.

Дмитрий Азаров поздравил научную и вузовскую общественность с праздником и вручил дипломы лауреатам премий губернатора Самарской области за выдающиеся результаты в решении технических, естественно-математических, медико-биологических, социально-экономических, гуманитарных и авиационно-космических проблем. Также благодарственными письмами губернатора Самарской области были отмечены руководители научных организаций, расположенных на территории Самарской области, в связи с 300-летием Российской академии наук.

Глава региона напомнил, что согласно указу президента РФ Владимира Путина в 2024 г. отмечается 300-летие Российской академии наук. В числе академиков РАН - и самарские представители: Виктор Сойфер, Геннадий Котельников, Евгений Шахматов, Сергей Шевченко, Федор Гречников. Дмитрий Азаров поздравил Федора Гречникова с высокой государственной наградой - вчера указом президента РФ ему присвоен орден Дружбы.

Губернатор подчеркнул: фундаментальные исследования непосредственно влияют на темпы экономического роста страны, ее безопасность, технологический суверенитет. "Обеспечение суверенитета в сфере технологий - одна из ключевых задач. Без этого невозможен суверенитет страны. И от решения этой задачи, поставленной главой государства, зависит достижение национальных целей развития, сохранение России как государства - прогрессивного, развивающегося, укрепляющего свою мощь. Самарская область занимает ведущие позиции в сфере научных исследований и их трансфера в различные отрасли экономики страны", - сказал Дмитрий Азаров.

Вузы, научные организации и индустриальные партнеры реализуют многочисленные совместные проекты. "В результате мы получаем новейшие научные достижения и наукоемкие технологии, находящие свое практическое применение. И здесь, конечно, нам нужно наращивать усилия значительно, мы над этим работаем", - сообщил глава региона.

Фундаментальная наука вузов Самарской области обеспечивает конкурентоспособность регионального образования в долгосрочной перспективе. Сегодня три вуза области (Самарский университет имени С.П.Королева, Самарский государственный медицинский университет и Тольяттинский государственный университет) являются участниками самой масштабной в истории России государственной программы поддержки университетов "Приоритет-2030".

В рамках федерального проекта "Передовые инженерные школы" в Самаре созданы две такие школы - на базе Самарского университета и СамГМУ. Совсем недавно было принято решение о создании третьей школы - на базе ТГУ. За поддержку в этом губернатор поблагодарил министра науки и высшего образования РФ Валерия Фалькова.

Ряд университетов Самарской области являются опорными вузами. Вузы и научные организации региона успешно участвуют в реализации национального проекта "Наука и университеты".

Связь науки и производства обеспечивает и активно развивающийся научно-образовательный центр "Инженерия будущего", который является крупнейшим межрегиональным НОЦ страны и объединяет 49 предприятий, 25 университетов из разных регионов, восемь научных организаций. В числе партнеров НОЦ - и три университета из Республики Беларусь. "Стратегическими индустриальными партнерами выступают государственные корпорации Ростех, Роскосмос, Российские железные дороги. Партнерские соглашения у нас подписаны еще с целым рядом высокотехнологичных крупнейших в стране компаний", - добавил Дмитрий Азаров.

Губернатор выразил благодарность Совету ректоров за работу по реализации проекта международного межвузовского кампуса IT-направления, разработку идей при подготовке проектного технического задания. Заявка Самарской области на конкурсном отборе стала лучшей и была поддержана президентом РФ. К ее подготовке были привлечены и профессорско-преподавательский состав, и студенты, в области уже есть молодежный совет кампуса. Дмитрий Азаров отметил, что на недавнем совещании по развитию сети кампусов президент Владимир Путин обозначил ряд условий, которые должны обеспечивать современные кампусы, в том числе это обеспечение импульса развитию территорий, связи науки и производства, возможности для получения передовых знаний, доступа к ресурсам кампуса для одаренных школьников. Заявка региона была поддержана центром "Сириус", в перспективе в кампусе планируется разместить центр одаренных детей. Достигнута договоренность со Сбером о размещении там "Школы 21". Предусмотрены площади для индустриальных партнеров. Кампус, который будет возведен на перспективной территории, являющейся центром Самарско-Тольяттинской агломерации, рядом со стадионом "Солидарность Самара Арена", станет драйвером развития этого пространства.

"В нашем проекте все, на что обращал внимание президент, учтено. Мы комплексно подходим к реализации этого проекта. Эта тщательная проработка на старте крайне важна, чтобы этот проект был успешным, чтобы не пришлось потом что-то переделывать, чтобы решения, которые мы принимаем, были эффективными", - подчеркнул Дмитрий Азаров.

Губернатор заверил, что правительство Самарской области продолжит поддерживать научные коллективы, авторов перспективных исследований и экспериментальных разработок. "На указанные цели в региональном бюджете предусмотрено около 1 млрд рублей, - сообщил Дмитрий Азаров. - Это и софинансирование проектов и программ в рамках передовой инженерной школы, академического лидерства, и региональные бюджетные места в университетах, грантовая поддержка, поддержка технологического предпринимательства и так далее. Обязательно эту работу будем продолжать".

По решению главы региона в структуре областного правительства будет создан отдельный департамент науки и высшей школы. "Мы действительно сегодня настолько активно совместно ведем работу по научным изысканиям и их внедрению, что время пришло: такой департамент - не в структуре министерства, а в структуре правительства - будет создан в ближайшее время", - отметил губернатор.

Также Дмитрий Азаров напомнил, что 2024 г. - это третий год Десятилетия науки и технологий, объявленного президентом РФ Владимиром Путиным. Главная цель Десятилетия - в том, чтобы результаты научной деятельности стали более заметными, для государства и общества, востребованными и полезными.

Деятельность ученых, представителей науки, преподавателей вузов также направлена на воспитание настоящих патриотов России. Наряду с научными разработками и их внедрением, вкладом в будущее страны, важным событием станет участие в выборах президента в марте текущего года. Он отметил, обращаясь к научному сообществу, насколько важно не только самим прийти на выборы, но и объяснить значимость этого коллегам и студентам.

Глава региона подчеркнул: "Участие граждан в выборах - это самый верный показатель консолидации нашего общества, признак того, что всем нам небезразлична судьба России. Это свидетельство поддержки нашей страны на одном из самых непростых исторических этапов ее развития. Свидетельство того, что мы - единый народ с вековыми традициями и ценностями, главная из которых - любовь к Родине".

В ходе торжественного мероприятия глава региона вручил дипломы лауреатам премий губернатора Самарской области за выдающиеся результаты в решении технических, естественно-математических, медико-биологических, социально-экономических, гуманитарных и авиационно-космических проблем. В этом году одной из обладательниц премии стала Вера Вахнина, доктор технических наук, профессор, заведующий кафедрой "Электроснабжение и электротехника" Тольяттинского государственного университета. Она занимается разработками в сфере обеспечения надежного и безопасного функционирования объектов электроэнергетики при деструктивных факторах природных и техногенных электромагнитных воздействий.

Также дипломом как лауреат премии была отмечена Нонна Молевич, доктор физико-математических наук, профессор, главный научный сотрудник, исполняющий обязанности заведующего теоретическим сектором Самарского филиала Физического института имени Лебедева Российской академии наук. Она развивает такие научные направления, как газодинамика и магнитогазодинамика тепловыделяющих газо-плазменных сред с широкими астрофизическими, аэрокосмическими и лабораторными применениями.

За выдающиеся результаты в решении социально-экономических проблем обладателем премии стал Евгений Франк, доктор экономических наук, доцент, проректор по развитию кадрового потенциала и воспитательной работе Самарского государственного технического университета. Развиваемые им научные направления - "Построение региональной инновационной системы Самарской области", "Развитие кадрового потенциала региона и система профессионального образования".

За выдающиеся результаты в решении гуманитарных проблем премия присуждена Олегу Буранку, доктору педагогических наук, доктору филологических наук, заведующему кафедрой литературы, журналистики и методики обучения Самарского государственного социально-педагогического университета. Он разработал научно-методические основы изучения русской литературы XVIII века в вузе, является автором вузовских учебных пособий.

За выдающиеся результаты в решении авиационно-космических проблем премию получил Валерий Матвеев, доктор технических наук, профессор, профессор кафедры теории двигателей летательных аппаратов имени Лукачева Самарского национального исследовательского университета имени академика С.П.Королева. Сфера его научных интересов - повышение энергетической эффективности рабочих процессов лопаточных машин двигателей и энергетических установок летательных аппаратов, он является автором более чем 180 печатных работ, 15 патентов и авторских свидетельств по таким научным направлениям, как "Методы и средства проектирования центростремительных и осевых микротурбинных приводов", "Математическое моделирование и оптимизация рабочих процессов многоступенчатых компрессоров и турбин газотурбинных двигателей".

Также лауреатом премии стал Сергей Харитонов, доктор физико-математических наук, ведущий научный сотрудник лаборатории дифракционной оптики Института систем обработки изображений РАН - филиала Федерального научно-исследовательского центра "Кристаллография и фотоника" Российской академии наук, автор более 180 печатных работ, 10 патентов и авторских свидетельств.

Вера Вахнина в своем ответном слове поблагодарила Дмитрия Азарова за оценку ее вклада в развитие региональной и российской науки и отметила большую поддержку, которую оказывает глава региона развитию университетской науки и талантливой молодежи.

Нонна Молевич подчеркнула, что эта премия служит оценкой не только ее работы, но и всего ее коллектива, в основном, молодежного. Она также отметила значимость региональной поддержки для молодых ученых: "Молодые дают импульс для дальнейших научных прорывов. Я хочу еще раз поблагодарить руководство Самарской области за постоянную поддержку фундаментальной в том числе науки - это и система губернских грантов, премий, и  многочисленные конкурсы молодых ученых. Это очень нужно для нас как наставников, так и для молодых прежде всего".

Евгений Франк в ответном слове отметил роль вуза в развитии кадрового потенциала для экономики и промышленности региона и страны, для обеспечения технологического суверенитета. "Сегодня вся наша работа направлена на выполнение этой задачи под девизом "наука, кадры и инновации для нашей победы во благо России", - сказал он. - Молодежь идет в науку, а это значит, что у нас есть будущее".
Олег Буранок напомнил о важной роли педагогов в подготовке учеников, которые в будущем идут в науку, достигают успеха в других отраслях. "Завершился Год педагога и наставника, сейчас объявлен Год семьи. Мы, конечно, отдаем дань уважения нашим учителям. Есть за что сказать спасибо, в том числе нынешнему поколению преподавателей, учителей. По оценкам Министерства просвещения, система образования Самарской области по итогам 2023 года вошла в пятерку лучших в стране", - подчеркнул Дмитрий Азаров.

Также были отмечены благодарственными письмами губернатора Самарской области коллективы научных организаций, расположенных на территории Самарской области, которые успешно ведут фундаментальные и прикладные исследования по приоритетным направлениям естественных, технических и гуманитарных наук.

За достижение высоких научных результатов и в связи с празднованием в 2024 г. 300-летия благодарственные письма губернатора Самарской области вручили Самарскому филиалу Физического института имени Лебедева Российской академии наук; Отделению "Институт систем обработки изображений - Самара" Курчатовского комплекса кристаллографии и фотоники Национального исследовательского центра "Курчатовский институт"; Самарскому федеральному исследовательскому центру Российской академии наук.

Кроме того, особое внимание на мероприятии было уделено самарским династиям, в которых на одном научном поприще работают несколько поколений семьи. В частности, научно-педагогическое семейное дело продолжили сыновья Олега Буранка. Старший сын стал кандидатом исторических наук, младший - доктором исторических наук. По словам главы династии, внук тоже планирует стать историком. Доктор педагогических наук считает важнейшей задачей сейчас воспитание гражданина и патриота, сохранение в обществе единения.

Завершая церемонию награждения, губернатор поздравил всех с Днем российской науки. "Я желаю вам успехов в ваших изысканиях, непременно реализации, воплощения в жизнь, внедрения ваших идей, технологий - и, конечно, мирного неба над головой. Об этом сегодня заботятся, исполняя свой долг перед Родиной, тяжелым ратным трудом наши воины - защитники, настоящие герои. Подвиг наших защитников накладывает особую ответственность, чтобы мы каждый день делали все для приближения святого дня победы", - обратился к сообществу губернатор.

https://volga.news/article/696557.html

07.02.24 06.02.2024 Хабр. Учёные предложили способ, как найти «червоточины» в космосе

Исследователи из Московского физико-технического института, Физического института им. Лебедева РАН и Крымской астрофизической обсерватории предложили новое понимание природы джетов — струй плазмы, которые на скорости, близкой к световой, вырываются из сверхмассивных чёрных дыр в центре некоторых галактик. Статья с результатами исследований опубликована в журнале Monthly Notices of Royal Astronomical Society.

По современным представлениям, джеты образуются, когда вещество из звёзд или газовых облаков устремляется в гравитационную яму сверхмассивной чёрной дыры в центре галактики. При этом материя образует дискообразную структуру — так называемый аккреционный диск. Взаимодействие этой массы и магнитного поля чёрной дыры порождает мощный выброс, который в виде узкой струи устремляется в космос. Длина такого выброса достигает сотен и тысяч световых лет.

Изображение релятивистского джета в галактике М87, полученное с помощью наземно-космического интерферометра Радиоастрон на частоте 1668 МГц.

Московские и крымские учёные на основе наблюдений, сделанных современными космическими телескопами, предложили новаторский подход к определению физических параметров, определяющих активность этих объектов. Причём оказалось, что выдвинутая гипотеза хорошо сочетается с другими знаниями об этих космических объектах и укладывается в математические уравнения.

«Раньше предполагали, что джет имеет коническую форму, расширяясь по мере удаления от своего ядра — основания. Причём считалось, что плазма в джете разогнана в начале до максимальной скорости и на всём его протяжении распространяется равномерно. Однако ранее мы показали, что, наоборот, джет имеет форму параболы, а вещество в нём не движется равномерно, а разгоняется на каждом этапе пути. Эти данные существенно противоречат общепринятому методу оценки магнитного поля в джетах. В нашей новой работе мы предложили такой метод определения магнитного поля в джетах, который согласован с новой картиной формы джетов и ускорения плазмы в них. Хотя этот метод требует больше наблюдательных данных, он позволяет легко экстраполировать величину поля с парсековых масштабов на масштабы гравитационного радиуса, то есть заглядывать в самое сердце активной машины», — объяснила суть новых предположений Елена Нохрина, заведующая лабораторией фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ, старший научный сотрудник отдела теоретической физики ФИАН.

Она отметила, что новые данные позволили усовершенствовать способ, который астрофизики прежде использовали для расчёта свойств джетов — так называемый метод сдвига ядра. Он заключается в том, что основание джета, если смотреть на него в радиодиапазоне, как правило, смещено от своего истинного положения.

При этом, в зависимости от частоты радиоволн, это видимое местонахождение меняется. В результате новаторская модель джета, заложенная в традиционную методику расчёта, позволила учёным с высокой точностью определить энергию магнитного поля ряда сверхмассивных чёрных дыр, из которых вырываются джеты.

Для примера учёные приложили своё понимание природы джета к галактике М87 и квазару NGC 315. Эти объекты хорошо изучены в ходе реализации международного проекта Телескопа горизонта событий и по данным наблюдений на других интерферометрах со сверхдлинными базами. Сделанные расчёты показали, что новая теория хорошо сочетается с прежде известными данными.

Как считают авторы научной работы, предложенная модель не только поможет в изучении сверхмассивных чёрных дыр и их джетов, но также даст возможность открыть новые экзотические объекты, которые в настоящее время существуют в виде гипотез.

«В частности, известно, что скопления вещества в аккреционном диске вокруг чёрной дыры не могут образовать магнитные поля с энергией более 104 Гс (гаусс). Значит, усовершенствованный нами метод сдвига можно использовать как индикатор. Если мы зафиксируем объекты с энергией магнитного поля, которая превышает этот уровень, то можем предположить наличие новых, неизвестных прежде форм пространства-времени», — пояснила Елена Нохрина.

Например, считает учёный, благодаря более точному пониманию природы джета астрофизики получат новый инструмент для поиска в космосе таких высокоэнергетических объектов, как «кротовые норы», или, как их называют за рубежом, «червоточины». Это гипотетические «тоннели», которые из-за неравномерности пространства-времени могут напрямую соединять удалённые точки Вселенной.

Другой тип объектов, неизвестных науке, которые можно обнаружить, используя предложенные модели, — это кварковые звёзды. Так астрофизики называют гипотетические массивы в космосе, которые состоят не из атомов, а из кварков — самых элементарных «кирпичиков» материи.

В ближайшей перспективе новая модель джетов может быть полезна при подготовке научной программы российской космической обсерватории «Спектр-М», запуск которой запланирован в начале 2030 годов. Одна из задач этой миссии — поиск «кротовых нор» в квазарах.

https://habr.com/ru/news/791876/

06.02.24 06.02.2024 Научная Россия. Как найти «кротовые норы» в космосе – новаторский подход российских ученых

Фундаментальный прорыв в изучении черных дыр и джетов сделали российские ученые. Их разработки помогут астрофизикам отыскать в космосе такие гипотетические объекты, как «кротовые норы» (или «червоточины») и кварковые звезды.

Изображение релятивистского джета в галактике М87, полученное с помощью наземно-космического интерферометра Радиоастрон на частоте 1668 МГц

Исследователи из Физического института им. П.Н. Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Крымской астрофизической обсерватории предложили новое понимание природы джетов – струй плазмы, которые на скорости, близкой к световой, вырываются из сверхмассивных черных дыр в центре некоторых галактик. Статья с результатами исследований опубликована в журнале Monthly Notices of Royal Astronomical Society.

По современным представлениям, джеты образуются, когда вещество из звезд или газовых облаков устремляется в гравитационную яму сверхмассивной черной дыры в центре галактики. При этом материя образует дискообразную структуру – так называемый аккреционный диск. Взаимодействие этой массы и магнитного поля черной дыры порождает мощный выброс, который в виде узкой струи устремляется в космос. Длина такого выброса достигает сотен и тысяч световых лет.

Московские и крымские ученые на основе наблюдений, сделанных современными космическими телескопами, предложили новаторский подход к определению физических параметров, определяющих активность этих объектов. Причем оказалось, что выдвинутая гипотеза хорошо сочетается с другими знаниями об этих космических объектах и укладывается в математические уравнения.

«Раньше предполагали, что джет имеет коническую форму, расширяясь по мере удаления от своего ядра — основания. Причем считалось, что плазма в джете разогнана в начале до максимальной скорости и на всем его протяжении распространяется равномерно. Однако ранее мы показали, что, наоборот, джет имеет форму параболы, а вещество в нем не движется равномерно, а разгоняется на каждом этапе пути. Эти данные существенно противоречат общепринятому методу оценки магнитного поля в джетах. В нашей новой работе мы предложили такой метод определения магнитного поля в джетах, который согласован с новой картиной формы джетов и ускорения плазмы в них. Хотя этот метод требует больше наблюдательных данных, он позволяет легко экстраполировать величину поля с парсековых масштабов на масштабы гравитационного радиуса, то есть заглядывать в самое сердце активной машины», — объяснила суть новых предположений Елена Нохрина, старший научный сотрудник Лаборатории проблем физики космоса ФИАН, заведующая лабораторией фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ.

Она отметила, что новые данные позволили усовершенствовать способ, который астрофизики прежде использовали для расчета свойств джетов – так называемый метод сдвига ядра. Он заключается в том, что основание джета, если смотреть на него в радиодиапазоне, как правило, смещено от своего истинного положения.

При этом, в зависимости от частоты радиоволн, это видимое местонахождение меняется. В результате новаторская модель джета, заложенная в традиционную методику расчета, позволила ученым с высокой точностью определить энергию магнитного поля ряда сверхмассивных черных дыр, из которых вырываются джеты.

Для примера ученые приложили свое понимание природы джета к галактике М87 и квазару NGC 315. Эти объекты хорошо изучены в ходе реализации международного проекта Телескопа горизонта событий и по данным наблюдений на других интерферометрах со сверхдлинными базами. Сделанные расчеты показали, что новая теория хорошо сочетается с прежде известными данными.

Как считают авторы научной работы, предложенная модель не только поможет в изучении сверхмассивных черных дыр и их джетов, но также даст возможность открыть новые экзотические объекты, которые в настоящее время существуют в виде гипотез.

 «В частности, известно, что скопления вещества в аккреционном диске вокруг черной дыры не могут образовать магнитные поля с энергией более 104 Гс (гаусс). Значит, усовершенствованный нами метод сдвига можно использовать как индикатор. Если мы зафиксируем объекты с энергией магнитного поля, которая превышает этот уровень, то можем предположить наличие новых, неизвестных прежде форм пространства-времени», – пояснила Елена Нохрина.

Например, считает ученый, благодаря более точному пониманию природы джета астрофизики получат новый инструмент для поиска в космосе таких высокоэнергетических объектов, как «кротовые норы», или, как их называют за рубежом, «червоточины». Это гипотетические «тоннели», которые из-за неравномерности пространства-времени могут напрямую соединять удаленные точки Вселенной.

Другой тип объектов, неизвестных науке, которые можно обнаружить, используя предложенные модели, – это кварковые звезды. Так астрофизики называют гипотетические массивы в космосе, которые состоят не из атомов, а из кварков – самых элементарных «кирпичиков» материи.

В ближайшей перспективе новая модель джетов может быть полезна при подготовке научной программы российской космической обсерватории «Спектр-М», запуск которой запланирован в начале 2030 годов. Одна из задач этой миссии – поиск «кротовых нор» в квазарах.

Информация и фото предоставлены отделом по связям с общественностью ФИАН

https://scientificrussia.ru/articles/ucenye-predlozili-sposob-kak-najti-cervotociny-v-kosmose

06.02.24 06.02.2024 Гайская новь. Школьники и студенты Гайского округа поговорили о науке
В школах Гайского округа 5 февраля прошел урок «Разговоры о важном», посвященный Дню российской науки.

Подробнее читайте на сайте Гайская Новь https://gaiskayanov.ru/2024/02/06/shkolniki-i-studenty-gajskogo-okruga-pogovorili-o-nauke/
В школах Гайского округа 5 февраля прошел урок «Разговоры о важном», посвященный Дню российской науки.

Подробнее читайте на сайте Гайская Новь https://gaiskayanov.ru/2024/02/06/shkolniki-i-studenty-gajskogo-okruga-pogovorili-o-nauke/

В школах Гайского округа 5 февраля прошел урок «Разговоры о важном», посвященный Дню российской науки.

Школьникам, студентам техникумов и колледжей региона рассказали о научном потенциале России, достижениях ученых страны. Так, ребята с интересом слушали историю об открытии ученым Д.И. Менделеевым периодического закона, являющегося одним из фундаментальных законов природы. В этом году исполняется 190 лет со дня рождения известного русского химика.

Федеральным спикером мероприятия стал научный сотрудник Физического института им. П.Н. Лебедева Российской академии наук Илья Семериков – один из разработчиков квантового компьютера.

В Оренбургской области благодаря национальному проекту «Образование» созданы условия для развития исследовательских способностей детей. Открыты инновационные площадки в школах и организациях среднего профессионального образования – детские технопарки «Кванториум», центры образования «Точка роста», «IT-кубы», мастерские центра выявления и поддержки одаренных детей «Гагарин». Здесь школьников знакомят с азами научных исследований и экспериментов, которые помогут им в дальнейшей научно-исследовательской деятельности.

8 февраля, в День российской науки, в детском технопарке «Кванториум» юные исследователи защитят свои первые научные проекты.

День российской науки приурочен к дате основания Петербургской академии наук, учрежденной по повелению императора Петра I указом Сената от 8 февраля 1724 года. В 2024 году Российская академия наук празднует свое 300-летие.

https://gaiskayanov.ru/2024/02/06/shkolniki-i-studenty-gajskogo-okruga-pogovorili-o-nauke/

06.02.24 05.02.2024 ФедералПресс. Школьникам рассказали о важности научных открытий и работе ученого

МОСКВА, 5 февраля, ФедералПресс. Традиционное внеурочное занятие «Разговоры о важном», которое прошло в понедельник в школах и колледжах страны, было посвящено Дню российской науки и 190-летию со Дня рождения выдающегося химика Дмитрия Ивановича Менделеева.

Почетным гостем урока стал научный сотрудник Физического института имени Лебедева Российской академии наук, а также один из разработчиков квантового компьютера Илья Семериков.

«Работа ученых очень разнообразна и даже разные области очень по-разному устроены. На самом деле наука очень широкая и большая часть работы ученого это исследования и работа над ними», – отметил Илья Семериков.

Он также рассказал ребятам, как ученые делают открытия, чем квантовый компьютер отличается от обычного и доступен ли он современным школьникам и студентам, а также поделился секретами, как сделать свое первое открытие.

Продолжая занятие, старшие наставники помогли школьникам и студентам сделать вывод, что наука помогает понимать мир вокруг, исследовать новые технологии и находить решения для сложных задач, избавляя от болезней, помогая бороться с изменением климата, выстраивать энергетическую безопасность, делая жизнь человека удобнее.

Ранее на уроке «Разговоры о важном» студентам и школьникам рассказали об освобождении Ленинграда, 80-летие которого отметили в 2024 году. Ребята узнали, какой ценой жителям города досталась победа.

https://fedpress.ru/news/77/society/3296862

06.02.24 05.02.2024 Газета.Ru. Российским школьникам рассказали об истории отечественной науки

День российской науки стал темой традиционных уроков «Разговоры о важном», прошедших по всей стране. Российским школьникам рассказали о жизни и работе выдающегося химика Дмитрия Менделеева и мероприятиях, которые приурочены к 190-летию со дня рождения ученого. Об этом сообщается на сайте проекта.

Школьникам объяснили, что цель науки — узнать что-то новое об окружающем мире и использовать эти знания на благо людей.

Героем подготовленного к уроку ролика стал научный сотрудник Физического института имени Лебедева Российской академии наук, один из разработчиков квантового компьютера Илья Семериков.

«Работа ученых очень разнообразна и даже разные области очень по-разному устроены. На самом деле наука — очень широкая, и большая часть работы ученого — это исследования, работа над ними», — поделился Семериков.

Ученый рассказал, как происходят открытия и чем квантовый компьютер отличается от обычного.

Педагоги в ходе диалога со школьниками пришли к выводу, что наука помогает понимать мир вокруг, исследовать новые технологии и находить решения для сложных задач, избавляя от болезней, помогая бороться с изменением климата, выстраивать энергетическую безопасность, делая жизнь человека удобнее.

Напомним, занятия «Разговоры о важном» еженедельно проводятся в российских школах и профессиональных образовательных организациях в рамках внеурочной деятельности с сентября 2022 года.

Проект направлен на сохранение исторической памяти и преемственности поколений, развитие ценностного отношения обучающихся к России, ее истории, природе и культуре.

https://www.gazeta.ru/social/news/2024/02/05/22267051.shtml

06.02.24 02.02.2024 ТроицкИнформ. Взгляд в прошлое

Чёрно-белые фотографии лежат россыпью. На них – дети, давно ставшие взрослыми, и люди, которые сидят сейчас за одним столом. Все они долгое время работали в детских садах сначала Академгородка, а потом уже и Троицка. Педагогический стаж каждого из этих специалистов составляет больше 30 лет. Их так и называют – ветераны педагогического труда. Встреча прошла в рамках проекта «Троицкие летописи».

Судьба каждого из этих людей тесно переплетается с историей Троицка. Тамара Фокина переехала в Академгородок в 1969 году. Она возглавила детский сад №37, который находился в ведомстве ИЗМИРАНа. Позже Фокину пригласили в новый детский сад №33, расположенный в микрорайоне «В» (сей-
час – 7-е дошкольное отделение Гимназии Троицка), его строил и открывал ФИАН, а потом Фокина стала заведующей детского сада №1 (сейчас – 1-е отделение Лицея). «Ещё в 37-м детском саду сложился очень дружный коллектив, – вспоминает Тамара Фокина. – И это близкое, родное отношение я пронесла через все последующие места работы».

Осенью 1973 года в детский сад №33 пришла работать выпускница пединститута им. Ленина Евгения Левченко. «Ходил только 531-й
автобус, – вспоминает Евгения. – Я доехала до остановки «40-й километр». Шла на встречу к Тамаре Харлампьевне вдоль ИФВД, у забора росли молодые ёлочки. Было так тихо и уютно, что я подумала: «Как же здесь хорошо растить детей!» Хотя своей семьи у меня ещё не было».

Вместе с Тамарой Фокиной методист Евгения Левченко открывала детский сад №33. «Родители были очень отзывчивые, – рассказывает Левченко. – Помогали оборудовать площадки, участвовали в субботниках, отмывали группы после ремонта». В жизни дошкольных учреждений Академгородка активно участвовали научные институты: ИЗМИРАН, ФИАН, ИФВД, ИСАН. Нужно было всё, начиная от забора и спортивного инвентаря и заканчивая шторами в группы.

В 1977 году к троицкому педагогическому сообществу присоединилась Вера Макарова. Окончив институт культуры, она стала работать в 46-м детском саду на улице Лесной (сейчас – 5-е дошкольное отделение Лицея Троицка) музыкальным руководителем. «Мы придумывали сюжеты для праздников, – вспоминает Макарова. – При нас на телевидении начались «Голубые огоньки», так мы утренники стали проводить по схожему сценарию. И участвовали у нас не только дети, но и родители. Мамы и папы даже стихи сами сочиняли!»

В это же дошкольное учреждение, но уже в конце 1980-х, после реконструкции, пришла работать музыкальным руководителем Ольга Кутякова. Детский сад №5 или «Теремок», как он стал называться, находился в ведении «Магнитки» (сейчас ГРЦ РФ ТРИНИТИ). «Детский сад не только отремонтировали, но и достроили эстетический блок, – рассказывает Кутякова. – Это была такая новинка в Троицке! У нас всё было особенное: бассейн больше, му-
зыкальный зал – просторней. Физкультурный зал располагался отдельно. В художественной студии чего только не было: керамика, вазы, краски и мольберты… Сделали даже компьютерный класс. Приходили из «Магнитки», обучали воспитателей работать на компьютерах!» Ольга Кутякова пела в Троицком камерном хоре. И в разные годы в роли Деда Мороза выступали руководитель коллектива Алексей Малый и солисты Сергей Коневских и Алексей Шаулов.

Татьяна Жукова начала карьеру в Троицке в 1979 году в старом фабричном детском саду, который располагался около нынешнего мемориала с Вечным огнём. Сад был для детей работников фабрики, небольшой, всего на 6 групп, одна из которых – ночная. «Горячей воды не было, дети спали на раскладушках: их ставили каждый раз перед сном, – вспоминает Жукова. – Ясли находились в отдельном здании на другой улице». Через год Татьяна ушла в декрет, а вышла в 1981-м уже в детский сад №1, где была заведующей Тамара Фокина. «Не хватало пособий, так мы их сами делали, – рассказывает Жукова. – Сколько мы вырезали из картона треугольничков, квадратиков, грибочков! Красили, покрывали лаком…»

Дошкольников приучали к труду. «Коллективный труд был по пятницам, – поясняет Жукова. – Фартучки надевали, протирали каждый кубик, шкафы, тряпочки выжимали… Ждали этого дня, спрашивали: когда мы будем убираться? На огороде копали, сажали, поливали, пололи. А когда песок привозили, это было просто «на ура»! Кто на носилках, кто в ведёрках, даже в формочках носили! Родители вечером приходили и подключались к процессу. В те годы мы все замечательно, дружно жили». В дошкольном учреждении, в котором работали Тамара Фокина и Татьяна Жукова, позже расположилась начальная школа. А воспоминания о работе в детском саду остались, в том числе и в чёрно-белых фотографиях.

Наталья МАЙ, фото Александра КОРНЕЕВА

https://троицкинформ.москва/vzglyad-v-proshloe/

06.02.24 02.02.2024 Новые округа. Проверять и не верить

Самые серьезные люди нашей страны 8 февраля отметят свой главный праздник. Это ученые. Те, которые каждый день отвечают на десятки умнейших вопросов, в силу профессии, конечно. «НО» в честь приближающегося Дня науки решили задать ученым вопросы попроще и понаивнее — те, которые наши читатели присылали нам на почту. А ответ перед читателями держит руководитель ТОП ФИАН, завкафедрой МПГУ, член-корреспондент Российской академии наук Андрей Наумов (на фото).

На фото руководитель ТОП ФИАН, завкафедрой МПГУ, член-корреспондент Российской академии наук Андрей Наумов

Андрей Витальевич, один из самых популярных вопросов: как запомнить все, что вы знаете?

На этот вопрос я отвечу словами нейрофизиолога Татьяны Черниговской. Она выделила несколько правил для эффективной работы мозга. Первое — человек должен постоянно учиться. Второе — важно изучать иностранные языки. Это задействует все зоны головного мозга. Третье, неочевидное, но по себе знаю — очень полезное: игра на музыкальных инструментах. Когда задействованы сразу обе руки — активируются левое и правое полушария головного мозга. И четвертое, особенно важное! Обязательно нужно читать длинные и сложные художественные тексты. Именно это помогает активировать те зоны головного мозга, которые нужны ученым! К сожалению, сейчас читают единицы. Виной всему — появление смартфонов. Поглощая быструю информацию, человек перестает думать, анализировать, представлять. И это огромная проблема! По этой причине, кстати, многие известные люди, такие как Билл Гейтс, например, до 18 лет вообще не дают своим детям в руки телефоны.

А вы поступили так же?

Мы стараемся! Моя младшая дочь, третьеклассница, одна из немногих из ее окружения не пользуется смартфоном! Оттягиваем покупку, чтобы больше времени оставалось на чтение, музыку, учебу.

Одна наша читательница решила узнать: насколько проще ученым живется в современном мире. То есть легче ли им в быту...

Конечно! Из банального: не так давно у меня дома перестала греть батарея. Мастера вызывать? Зачем! Представляя, как циркулирует вода, как все устроено — разобрался и все починил сам. Или вот — пару месяцев назад пошел в мастерскую сдавать планшет в ремонт. Назвали огромную сумму за такую услугу. Я стал задавать наводящие вопросы и увидел, как специалист «поплыл», потому что просто хотел побольше заработать.

Что делают ученые на работе каждый день, если открытия они совершают редко?

Работают, конечно! Но если без шуток, то каждое открытие начинается с идеи. Это сложный этап. Спонтанный. Вспомните Архимеда, который в воду залез, и ему идея пришла в голову... Примерно так внезапно все и происходит. Потом начинается проверка идеи. Может быть, теоретическая, а может — экспериментальная. Тогда работы еще больше. В том числе нужно оборудование настроить — это иногда процесс не пяти минут. К примеру: у нас в Троицком ФИАНе есть уникальный ускоритель заряженных частиц — синхротрон (на нем еще нобелевский лауреат академик Черенков работал). Так коллеги иногда несколько месяцев его подготавливают к работе! Но и это еще далеко не все. Многие ученые занимаются численным моделированием на компьютере. Пытаются смоделировать ситуации, которые просчитать нельзя. Например, что будет с нашим климатом. На все перечисленное уходят месяцы, а может быть, и годы... Но при этом нет никакой гарантии, что что-то получится. Все результаты, в том числе отрицательные, надо фиксировать и записывать, чтобы представить общественности.

То есть необязательно научные открытия делаются с какой-то целью?

Совсем нет! Никто из нас никогда не знает, когда результат его работы пригодится. Ученый может выявить какую-то закономерность, описать ее и «положить» на полку. А через 50 лет она, например, поможет другому открытию.

Есть такое мнение, что ученые — это люди, которые ответят на любой вопрос. Но есть ли такие вопросы, на которые не найдется ответов?

Даже если и так, ученый выслушает вопрос. Возьмет паузу. А потом предложит ответ со своими доказательствами. Такие вот люди, эти ученые. Но на самом деле, я думаю, у меня и коллег вряд ли найдутся ответы на вопросы, связанные с человеческими взаимоотношениями: что такое любовь, дружба, душа и есть ли она... Наверное, если бы на это у нас нашлись ответы, было бы даже страшновато. Ну вот как представить любовь в виде формулы? Поэтому эти вопросы к психологам. Но психология — это наука!

Правда, что ученые не верят в мистику и все то, что таким можно назвать?

Знаете, я как-то слышал спор двух коллег. Один говорил, что поверит в высший разум, если ему представят все доказательства, как в науке это и положено. А другой говорил, что ни за что не поверит, даже если будет тысяча доказательств! Так что да, в мистику ученые не верят. Нет, все мы люди разные. Но уж точно они найдут объяснение того или иного явления. И в приметы мы не верим, и в астрологию, и в нумерологию. Такая у нас работа: все тщательно проверять и на слово не верить.

https://nov-okruga.ru/proveryat-i-ne-verit/

06.02.24 02.02.2024 Коммерсант. Лауреат премии «Вызов» Илья Семериков рассказал «Ъ» о будущем квантовых вычислений

Квантовые технологии — одна из наиболее многообещающих областей в современной физике с точки зрения возможностей дальнейшего практического применения. Какие задачи смогут решать квантовые компьютеры? Об этом «Ъ» рассказал кандидат физико-математических наук, научный сотрудник Физического института им. П.Н. Лебедева РАН (ФИАН), заместитель руководителя научной группы в Российском квантовом центре (РКЦ) Илья Семериков, получивший премию «ВЫЗОВ» за создание ионного квантового процессора с использованием многоуровневых квантовых систем — кудитов.

По словам Ильи Семерикова, некоторые задачи при помощи квантового компьютера можно будет решить быстрее, чем на классическом. И это может как принести пользу обществу, так и нанести вред. Яркий пример этому — алгоритм Шора, применяемый на квантовых компьютерах. С его помощью становится возможным взлом криптографических систем с открытым ключом. Впервые это было продемонстрировано в 2001 году специалистами компании IBM, разложившими при помощи квантового компьютера с 7 кубитами число 15 на множители 3 и 5. «С тех пор многие исследовательские группы стали активно развивать алгоритмы для квантовых компьютеров для решения задач кибербезопасности и других, в том числе при решении систем линейных уравнений, в химии, в машинном обучении. Предполагается, что количество задач для квантового компьютера будет лишь расти»,— сказал Илья Семериков.

Илья Семериков уточнил, что развитие квантовых вычислений сегодня похоже на то, как развивались классические компьютеры. До их появления трудно было предугадать, какие задачи они будут решать. Поначалу алгоритмы создавались для несуществующих компьютеров, набор этих алгоритмов был очень ограничен, и все они так или иначе происходили от ручных вычислений. Позже оказалось, что класс алгоритмов, которые можно запустить на классическом компьютере, гораздо больше, чем от него ожидали. Подобная история может произойти и с квантовыми компьютерами.

«Квантовые вычисления — это работа со сложными и многомерными системами, пространствами больших размерностей. Что это даст в прикладном аспекте, мы можем только предполагать. Так что мой честный и правдивый ответ на вопрос о практическом применении квантовых компьютеров следующий: на сегодня мы понимаем, что квантовый компьютер может относительно просто проводить повороты в пространствах очень больших размерностей, но понять, какие прикладные результаты это будет иметь, пока довольно сложно — нужно дождаться появления больших квантовых компьютеров»,— отметил Илья Семериков.

Национальная премия в области будущих технологий «Вызов» приурочена к объявленному в 2022 году Десятилетию науки и технологий и призвана отметить прорывные идеи и изобретения, меняющие ландшафт современной науки и жизнь каждого человека. Учредителем премии является фонд развития научно-культурных связей «Вызов» совместно с Газпромбанком при поддержке правительства Москвы. Генеральным партнером премии выступает госкорпорация «Росатом».

https://www.kommersant.ru/doc/6481365

29.03.24 27.03.2024 Московский комсомолец. Российские ученые создали установку, чтобы доказать возможность зарождения жизни в космосе
Глубокий космос с вакуумом и холодным светом звезд, оказывается, можно создать в обычной лаборатории. Первую в России экспериментальную установку создали сотрудники Самарского филиала Физического института им. П.Н. Лебедева РАН. Они намерены изучать механизмы зарождения жизни в космосе и на Земле.

В лаборатории смоделированы условия как на Плутоне

Установка, в которой моделируются условия происхождения жизни. Фото: Иван Антонов.

Пока одни ученые спорят о том, как могла появиться жизнь: из космоса прилетела или появилась на Земле, другие – экспериментируют. На днях своеобразный «инкубатор» для зарождения сложных молекул был представлен на заседании ученого совета РАН.

С виду он напоминает компактный ускоритель частиц – набор цилиндрических камер, труб, проводов. Вся установка – длиной с два метра будет. Так вот она какая – земная модель Вселенной!

Старший научный сотрудник Самарского филиала ФИАН Иван Антонов поясняет, что кубическая установка, возможно, была бы более внушительной, чтобы выдерживать внешнее давление атмосферы. 

- Для кубической нам пришлось бы стенки цилиндров делать по полтора сантиметра толщиной, из-за чего вся установка могла бы весить полтонны, – поясняет Антонов. – Цилиндры лучше выдерживают давление снаружи, потому их стенки тоньше, и вес всей нашей конструкции составляет всего несколько десятков килограмм. Мы моделируем в ней глубокий вакуум межзвездной среды: холодных молекулярных облаков и областей звездообразования.

 Ученые давно поняли, что органика появляется не только в живых организмах. Она есть и в кометах, и в астероидах, простые аминокислоты – составляющие белков можно встретить парящими в облаках межзвездного газа.

- Создаваемый нами в установке глубокий вакуум достаточно близок к вакууму звездной среды, чтобы можно было изучать процессы которые там происходят, – говорит Иван Антонов. – Внутри вакуумной камеры у нас – специальная, охлаждаемая до температуры жидкого гелия поверхность. Это 5 Кельвинов, – такова температура межзвездной среды. Мы напыляем на эту пластину лед, состоящий из простых органических молекул, к примеру, метана.

– От чего зависит выбор молекул?

– Мы выбираем такой состав льда, какой встречается на ледяных мантиях пылевых частиц в межзвездном пространстве. Потом мы эту модель космической ледяной мантии подвергаем облучению. Можем использовать разные его виды, но сейчас используем ультрафиолетовое, похожее на свет звезд на определенной спектральной линии атомарного водорода. Она называется Lyman-α (линия Лаймана-альфа), это жесткий ультрафиолет. Он обладает способностью вызывать химические реакции во льду, которые приводят к образованию более сложных молекул из простых.

– Расскажите о вашем первом опыте, – появление каких молекул вы уже осуществили в вашей установке?

– Как я уже сказал, мы поработали с метаном. Наморозили метановый лед на криогенной подложке и облучили. В результате мы увидели, что после облучения в камере появились более сложные углеводороды: пропан и бутан.

– Где в космосе теоретически могла бы произойти подобная реакция?

– Теоретически это могло бы произойти за пределами Солнечной системы. На Юпитере и Сатурне метан – в жидком состоянии, а вот на Плутоне и его спутнике Хароне, на кометах пояса Койпера – вполне возможен замороженный метан. В той области космоса, как мы знаем, много метана, замерзая, он образует лед, почти такой, какой мы получили в нашей установке. А за счет того, что туда доходит солнечное излучение, могут образовываться и пропан с бутаном.

Молекула звездной пыли. 100 нм. Фото: Ralf I. Kaiser

– Если в вашу установку добавить другие молекулы, жизнеобразующие, они могут привести к появлению биомолекул?

- Да. Но глобальная цель — понять процессы химической эволюции Вселенной, – как в космосе образовались те сложные молекулы, которые мы сегодня наблюдаем.

– Можете сказать, сколько их найдено и что это за молекулы?

– Сейчас найдено более 200 разных молекул, некоторые из них довольно простые: вода, монооксид углерода, метан, аммиак, метанол, формальдегид, диоксид углерода и другие, но есть и более сложные, такие как этанол или метилформиат.

– Как вы исследуете то, что получилось на вашей ледяной подложке?

– Во время проведения химической реакции лед испаряется и образовавшиеся частицы оказываются в вакууме, где мы и их и детектируем при помощи масс-спектрометра.

– Если у вас все получится, то теория о том, что жизнь могла прилететь к нам из космоса, будет доказана?

– Вероятно, да. Нас мотивировало к данному исследованию миссия «Розетта», – зонд, который нашел на комете 67Р/Чурюмова — Герасименко простую аминокислоту — глицин. Считается, что эта аминокислота может образовываться из аммиака, цианида и формальдегида. Для этого ей необходимо только присутствие воды и солнечной энергии. Подобные аминокислоты, вплоть до составных частей белков, были найдены и в метеоритном веществе, к примеру, в метеорите "Мерчисон", упавшем в Австралии в 1969 году. Эти вещества теоретически могли быть основой для образования более сложных организмов на Земле. То есть межзвездная химическая эволюция могла бы быть признана нами как основа для образования жизни.

– А условия ранней Земли в вашей установке можно создать?

– Там было горячо и плотность высокая. Для создания таких условий нам может пригодиться другая установка, в которой мы изучаем процессы горения.

https://www.mk.ru/science/2024/03/27/rossiyskie-uchenye-sozdali-ustanovku-chtoby-dokazat-vozmozhnost-zarozhdeniya-zhizni-v-kosmose.html

Подкатегории