СМИ о нас

09.12.22 09.12.2022 Научная Россия. ФИАН на Басовских чтениях в Липецком и Воронежском государственных университетах

Представители Физического института им. П.Н. Лебедева РАН приняли участие в Басовских чтениях, приуроченных к 100-летнему юбилею академика Н.Г. Басова, проходивших 5-6 декабря на его малой родине – в городах Липецк и Воронеж.

Принимающей стороной выступили Липецкий государственный технический университет и Воронежский государственный университет, деятельность которых непосредственно связана с научным наследием академика Басова. Так, основным направлением работы ЛГТУ является подготовка кадров для металлургической промышленности, где лазерные технологии стали одним из наиболее эффективных инструментов. На базе ВГУ успешно работают выдающиеся научные школы в области фотоники и спектроскопии, физики новых фотонных материалов.

На Чтениях ФИАН представляли: помощник директора по научной работе д.ф.-м.н. С.Ю. Савинов с приветственным словом от имени директора ФИАН чл.-корр. РАН Н.Н. Колачевского, а также с презентацией биографии Николая Геннадиевича Басова и докладом «Создание коротковолновых когерентных источников излучения на новых физических принципах»; проф. ФИАН В.Д. Зворыкин с докладом «Роль Н.Г. Басова в работах по созданию эксимерных лазеров − полувековая история от запуска первого Xe2 лазера в ФИАН до современных лазерных систем» и руководитель Троицкого обособленного подразделения ФИАН чл.-корр. РАН А.В. Наумов с лекцией «Лазерная флуоресцентная наноскопия» и рассказом об истории и современной работе ТОП ФИАН, организованного в 1960-е годы по инициативе Н.Г. Басова.

Открыл мероприятие ректор ЛГТУ П.В. Сараев. В работе Чтений в ЛГТУ участвовали ученые ИОФ им. А.М. Прохорова РАН проф. С.М. Першин с докладом «Диодные лазеры Басова-Крохина-Попова открыли новую эру зондирования лидаром без защиты глаз от поражения: к 100-летию академика Н.Г. Басова», с.н.с. В.Н. Леднев – «Лазерное дистанционное зондирование в промышленных приложениях и экологических исследованиях» и с.н.с. П.А. Сдвиженский – «Онлайн-химический анализ в современных аддитивных технологиях». Во встрече также участвовали первый проректор А.К. Погодаев и проректор по научной работе и инновациям ЛГТУ С.Е. Кузенков.

Басовские чтения в Воронеже были акцентированы на применении лазерной техники в различных областях современной физики и были ориентированы как на сотрудников и студентов ВГУ, так и на многочисленных учащихся базовых школ РАН. Заседание открыли проректор по воспитательной и социальной работе ВГУ О.В. Гришаев и декан физического факультета ВГУ О.В. Овчинников. Они отметили, что академик Басов был уроженцем г. Усмань (сейчас Липецкая область, ранее – Тамбовская область), однако именно с Воронежем во многом связано имя знаменитого физика. Здесь он окончил среднюю школу №13, на месте которой позже построили школу №58 (Гимназия им. академика Н.Г. Басова).

Вместе с научно-популярными лекциями представителей ФИАН о научном наследии Басова и работах своих коллективов рассказали профессор ВГУ д.ф.-м.н. М.В. Фролов – «Аттосекундная физика как новое приложение в физике взаимодействия сильных лазерных полей с веществом», проф. МИФИ д.ф.-м.н. А.П. Кузнецов – «Через тернии к звездам – история лазерного термоядерного синтеза» , доцент ВГУ д.ф.-м.н. М.С. Смирнов –  «Особенности нелинейного поглощения и рефракции наносекундных лазерных импульсов в коллоидных растворах полупроводниковых квантовых точек». Профессор А.В. Наумов выступил также с лекциями в Базовой школе РАН МБОУ лицей №7 г. Воронежа в рамках научно-популярного лектория профессоров РАН, организованного Президиумом Российской академии наук.

Наиболее активные молодые слушатели Басовских чтений были отмечены лекторами и получили несколько номеров научно-индустриального журнала «Фотоника» с автографами лекторов Чтений.

Информация и фото предоставлены отделом по связям с общественностью ФИАН

https://scientificrussia.ru/articles/fian-na-basovskih-cteniah-v-lipeckom-i-voronezskom-gosudarstvennyh-universitetah

09.12.22 09.12.2022 РАН. ФИАН на Басовских чтениях в Липецком и Воронежском государственных университетах

ФИАН на Басовских чтениях в Липецком и Воронежском государственных университетах

Представители Физического института им. П.Н. Лебедева РАН приняли участие в Басовских чтениях, приуроченных к 100-летнему юбилею академика Н.Г. Басова, проходивших 5-6 декабря на его малой родине – в городах Липецк и Воронеж.

Принимающей стороной выступили Липецкий государственный технический университет и Воронежский государственный университет, деятельность которых непосредственно связана с научным наследием академика Басова. Так, основным направлением работы ЛГТУ является подготовка кадров для металлургической промышленности, где лазерные технологии стали одним из наиболее эффективных инструментов. На базе ВГУ успешно работают выдающиеся научные школы в области фотоники и спектроскопии, физики новых фотонных материалов. 

На Чтениях ФИАН представляли: помощник директора по научной работе д.ф.-м.н. С.Ю. Савинов с приветственным словом от имени директора ФИАН чл.-корр. РАН Н.Н. Колачевского, а также с презентацией биографии Николая Геннадьевича Басова и докладом «Создание коротковолновых когерентных источников излучения на новых физических принципах»; проф. ФИАН В.Д. Зворыкин с докладом «Роль Н.Г. Басова в работах по созданию эксимерных лазеров − полувековая история от запуска первого Xe2 лазера в ФИАН до современных лазерных систем» и руководитель Троицкого обособленного подразделения ФИАН чл.-корр. РАН А.В. Наумов с лекцией «Лазерная флуоресцентная наноскопия» и рассказом об истории и современной работе ТОП ФИАН, организованного в 1960-е годы по инициативе Н.Г. Басова.
Открыл мероприятие ректор ЛГТУ П.В. Сараев. В работе Чтений в ЛГТУ участвовали ученые ИОФ им. А.М. Прохорова РАН проф. С.М. Першин с докладом «Диодные лазеры Басова-Крохина-Попова открыли новую эру зондирования лидаром без защиты глаз от поражения: к 100-летию академика Н.Г. Басова», с.н.с. В.Н. Леднев – «Лазерное дистанционное зондирование в промышленных приложения и экологических исследованиях» и с.н.с. П.А. Сдвиженский – «Онлайн-химический анализ в современных аддитивных технологиях». Во встрече также участвовали первый проректор А.К. Погодаев и проректор по научной работе и инновациям ЛГТУ С.Е. Кузенков.

Басовские чтения в Воронеже были акцентированы на применении лазерной техники в различных областях современной физики и были ориентированы как на сотрудников и студентов ВГУ, так и на многочисленных учащихся базовых школ РАН. Заседание открыли проректор по воспитательной и социальной работе ВГУ О.В. Гришаев и декан физического факультета ВГУ О.В. Овчинников. Они отметили, что академик Басов был уроженцем г. Усмань (сейчас Липецкая область, ранее – Тамбовская область), однако именно с Воронежем во многом связано имя знаменитого физика. Здесь он окончил среднюю школу №13, на месте которой позже построили школу №58 (Гимназия им. академика Н. Г. Басова). 

Вместе с научно-популярными лекциями представителей ФИАН о научном наследии Басова и работах своих коллективов рассказали профессор ВГУ д.ф.-м.н. М.В. Фролов – «Аттосекундная физика, как новое приложение в физике взаимодействия сильных лазерных полей с веществом», проф. МИФИ д.ф.-м.н. А.П. Кузнецов – «Через тернии к звездам – история лазерного термоядерного синтеза» , доцент ВГУ д.ф.-м.н. М.С. Смирнов –  «Особенности нелинейного поглощения и рефракции наносекундных лазерных импульсов в коллоидных растворах полупроводниковых квантовых точек». Профессор А.В. Наумов выступил также с лекциями в Базовой школе РАН МБОУ лицей №7 г. Воронежа в рамках научно-популярного лектория профессоров РАН, организованного Президиумом Российской академии наук. 

Наиболее активные молодые слушатели Басовских чтений были отмечены лекторами и получили несколько номеров научно-индустриального журнала «Фотоника» с автографами лекторов Чтений.

Источник: Отдел по связям с общественностью ФИАН.
https://new.ras.ru/activities/news/fian-na-basovskikh-chteniyakh-v-lipetskom-i-voronezhskom-gosudarstvennykh-universitetakh/

09.12.22 09.12.2022 N+1. Физики измерили сверхтонкое расщепление в мюонии

Физики из коллаборации Mu-MASS представили результаты второй части своего исследования, посвященного измерению частоты переходов в атоме мюония — связанной системе антимюона и электрона. По совокупности всей работы они не только уточнили лэмбовский сдвиг, но и впервые измерили сверхтонкое расщепление мюония в 2S-состоянии. Кроме того, физики увидели вклады от уровней с n = 3, что открывает дополнительные возможности для поиска Новой физики. Исследование опубликовано в Nature Communications.

История открытия и экспериментов с мюонами достаточно нетривиальная. Все началось с того, что обнаруженный в 1936 году мюон физики приняли за юкавовский пион — мезон-переносчик ядерного взаимодействия. По этой причине его какое-то время называли мю-мезоном. Ошибка окончательно была признана в 1947 году, когда Пауэлл с коллегами нашли настоящие пионы. Сейчас мы знаем, что мюоны — это бесструктурные частицы второго поколения лептонного семейства.

На этом роль мюонов в развитии физики не закончилась. В 2010 году они стали причиной возникновения кризиса, получившего название «загадка радиуса протона». Его сутью стали расхождения в значениях фундаментальных констант, а именно зарядового радиуса протона, полученные с помощью спектроскопии обычного и мюонного водорода. Подробнее об этой проблеме вы можете прочитать в материале «Щель в доспехах», а также в новостях, посвященных попыткам разрешения кризиса (1, 2, 3, 4, 5).

Другим существенным отклонением от Стандартной модели стали данные о мюонном магнитном моменте. Эта величина для всех элементарных частиц отличается от целочисленного значения, предписываемого квантовой механикой, из-за флуктуаций вакуума, поэтому точное значение магнитного момента принято называть аномальным. Измерения аномального магнитного момента мюона, проведенные в 2006 году в Брукхейвенской национальной лаборатории, дали результат, отличающийся от предсказаний теории на 3,7 стандартного отклонения (σ). В 2021 году благодаря усилиям физиков Фермилаба, разрыв усилился до 4,2 сигмы и до сих пор не объяснен.

К мюонной физике приковано внимание множества научных групп, включая коллаборацию Mu-MASS, в которую входят физики из Института Пауля Шерера, Швейцарской высшей технической школы Цюриха и Физического института имени Лебедева РАН (ФИАН). Чуть меньше года назад мы рассказывали, как они измерили лэмбовский сдвиг в мюонии с n = 2. Правда, в тот раз ученые задействовали всего один сверхтонкий подуровень 2S-состояния. В новом исследовании Mu-MASS не только вовлекли в эксперимент другой подуровень, но и возбудили мюоний в состояние с n = 3, что открывает дорогу к новому пласту измерений.

Мюонием называют связанное состояние положительного антимюона с отрицательным электроном. Он очень похож на атом водорода, но отличается от него конечным временем жизни, меньшей массой положительной частицы, а также отсутствием у антимюона структуры, что нивелирует поправки на конечный размер ядра и упрощает интерпретацию положений спектральных линий. Таким образом, разница между энергией уровней 2S и 2P в мюонии, известная как лэмбовский сдвиг, определяется исключительно поправками квантовой электродинамики, что делает эти экзотические атомы привлекательными для поиска Новой физики.

Прямой экспериментальный доступ к лэмбовскому сдвигу в атомах всегда затруднен из-за сверхтонкого расщепления уровней, который в случае мюония довольно существенен. Расстояние между синглетными и триплетными сверхтонкими подуровнями для 2S и 2P примерно равны 557,9 и 186,1 мегагерц, в то время как лэмбовский сдвиг составляет чуть более одного гигагерца. В прошлый раз физики из Mu-MASS исследовали переход из 2S F=1 подуровня в 2P подуровни. В этот раз они использовали 2S F=0 подуровень.

Схема энергетических уровней мюония
 

Схема энергетических уровней мюония
Gianluca Janka et al. / Nature Communications, 2022

Работа установки подробно описана в предыдущей новости. Вкратце, авторы создавали экзотические атомы, бомбардируя фольгу антимюонами. Основной измеряемой величиной в эксперименте была интенсивность линии Лайман-альфа, которую испускало часть атомов мюония, родившаяся в возбужденном 2S состоянии. Но перед этим физики готовили атомы в нужном сверхтонком состоянии и облучали микроволновым импульсом с перестраиваемой частотой, чтобы резонансно перевести возбужденные атомы в 2P состояние и уменьшить интенсивность излучения линии Лайман-альфа.

Если в прошлый раз их интересовал диапазон от 800 до 1600 мегагерц, то для стимулирования новых переходов ученые сканировали частоту в диапазоне от 200 до 1000 мегагерц. Помимо искомого 2S F = 0 — 2P F = 1 перехода вклад в контур давала линия 3S − 3P, что, фактически, стало первым в истории измерением переходов в мюонии с участием уровней c n = 3.

Экспериментальные точки вместе с подгонкой, учитывающей (черная линия) и не учитывающей (серая линия) вклад от уровня 3S (желтый контур). Синим цветом обозначен контур, соответствующий переходу 2S F = 0 — 2P F = 1, оранжевым и зеленым — переходам, исследованным в предыдущей работе.
 

Экспериментальные точки вместе с подгонкой, учитывающей (черная линия) и не учитывающей (серая линия) вклад от уровня 3S (желтый контур). Синим цветом обозначен контур, соответствующий переходу 2S F = 0 — 2P F = 1, оранжевым и зеленым — переходам, исследованным в предыдущей работе.
Gianluca Janka et al. / Nature Communications, 2022

Из результатов измерения физики извлекли значение лэмбовского сдвига, которое оказалось равным 1047,498 (1) мегагерца. Как и прошлое значение, оно находится в согласии с расчетами. Кроме того, комбинация обоих измерений позволила впервые экспериментально получить сверхтонкое расщепление 2S состояния — 559,6(7,2) мегагерца.

Ранее мы рассказывали про спектроскопические измерения другого атома с участием мюонов — мюонного гелия. В этом экзотическом атоме мюон заменяет один из электронов. Это позволило точно измерить размер альфа-частицы.

08.12.22 08.12.2022 Атомная Энергия 2.0. ФИАН принял участие в Басовских чтениях в Липецком и Воронежском государственных университетах

Представители Физического института им. П.Н. Лебедева РАН приняли участие в Басовских чтениях, приуроченных к 100-летнему юбилею академика Н.Г. Басова, проходивших 5-6 декабря на его малой родине – в городах Липецк и Воронеж. 

Принимающей стороной выступили Липецкий государственный технический университет и Воронежский государственный университет, деятельность которых непосредственно связана с научным наследием академика Басова. Так, основным направлением работы ЛГТУ является подготовка кадров для металлургической промышленности, где лазерные технологии стали одним из наиболее эффективных инструментов. На базе ВГУ успешно работают выдающиеся научные школы в области фотоники и спектроскопии, физики новых фотонных материалов. 

На Чтениях ФИАН представляли: помощник директора по научной работе д.ф.-м.н. С.Ю. Савинов с приветственным словом от имени директора ФИАН чл.-корр. РАН Н.Н. Колачевского, а также с презентацией биографии Николая Геннадьевича Басова и докладом «Создание коротковолновых когерентных источников излучения на новых физических принципах»; проф. ФИАН В.Д. Зворыкин с докладом «Роль Н.Г. Басова в работах по созданию эксимерных лазеров − полувековая история от запуска первого Xe2 лазера в ФИАН до современных лазерных систем» и руководитель Троицкого обособленного подразделения ФИАН чл.-корр. РАН А.В. Наумов с лекцией «Лазерная флуоресцентная наноскопия» и рассказом об истории и современной работе ТОП ФИАН, организованного в 1960-е годы по инициативе Н.Г. Басова.

Открыл мероприятие ректор ЛГТУ П.В. Сараев. В работе Чтений в ЛГТУ участвовали ученые ИОФ им. А.М. Прохорова РАН проф. С.М. Першин с докладом «Диодные лазеры Басова-Крохина-Попова открыли новую эру зондирования лидаром без защиты глаз от поражения: к 100-летию академика Н.Г. Басова», с.н.с. В.Н. Леднев – «Лазерное дистанционное зондирование в промышленных приложения и экологических исследованиях» и с.н.с. П.А. Сдвиженский – «Онлайн-химический анализ в современных аддитивных технологиях». Во встрече также участвовали первый проректор А.К. Погодаев и проректор по научной работе и инновациям ЛГТУ С.Е. Кузенков.

Басовские чтения в Воронеже были акцентированы на применении лазерной техники в различных областях современной физики и были ориентированы как на сотрудников и студентов ВГУ, так и на многочисленных учащихся базовых школ РАН. Заседание открыли проректор по воспитательной и социальной работе ВГУ О.В. Гришаев и декан физического факультета ВГУ О.В. Овчинников. Они отметили, что академик Басов был уроженцем г. Усмань (сейчас Липецкая область, ранее – Тамбовская область), однако именно с Воронежем во многом связано имя знаменитого физика. Здесь он окончил среднюю школу №13, на месте которой позже построили школу №58 (Гимназия им. академика Н. Г. Басова). 

Вместе с научно-популярными лекциями представителей ФИАН о научном наследии Басова и работах своих коллективов рассказали профессор ВГУ д.ф.-м.н. М.В. Фролов – «Аттосекундная физика, как новое приложение в физике взаимодействия сильных лазерных полей с веществом», проф. МИФИ д.ф.-м.н. А.П. Кузнецов – «Через тернии к звездам – история лазерного термоядерного синтеза» , доцент ВГУ д.ф.-м.н. М.С. Смирнов –  «Особенности нелинейного поглощения и рефракции наносекундных лазерных импульсов в коллоидных растворах полупроводниковых квантовых точек». Профессор А.В. Наумов выступил также с лекциями в Базовой школе РАН МБОУ лицей №7 г. Воронежа в рамках научно-популярного лектория профессоров РАН, организованного Президиумом Российской академии наук. 

Наиболее активные молодые слушатели Басовских чтений были отмечены лекторами и получили несколько номеров научно-индустриального журнала «Фотоника» с автографами лекторов Чтений.

Источник: ФИАН

https://www.atomic-energy.ru/news/2022/12/08/131075

08.12.22 08.12.2022 Sputnik Армения. Ученые разглядели в Млечном Пути космическую сенсацию

Инфракрасное изображение соседней спиральной галактики NGC 7331, называемой близнецом нашей галактики, на изображении космического телескопа NASA "Спитцер"

Российские астрофизики зарегистрировали поток нейтрино, рожденных в нашей Галактике. Что это значит для науки – в статье Владислава Стрекопытова, РИА Новости.
ЕРЕВАН, 8 дек — Sputnik. Ранее ученые предполагали, что в нейтринном излучении есть частицы от внутригалактических источников, но не могли их надежно идентифицировать. Теперь удалось отделить их от остальных и оценить количество. Оказалось, что на нейтрино Млечного Пути приходится около одной трети всех высокоэнергетических частиц, достигающих Земли.

Как ловят космические нейтрино

Даже массу этой частицы ученые до сих пор не знают, настолько она маленькая. Нейтрино беспрепятственно пересекают Вселенную, практически не взаимодействуя с веществом. Сквозь предметы, людей и всю планету их пролетают триллионы в секунду.
Частицы с низкими энергиями (десятки мегаэлектронвольт) приходят к нам от Солнца (солнечные нейтрино), рождаются в реакциях распада в недрах нашей планеты (геонейтрино) или в ядерных реакторах. Из дальнего космоса — высокоэнергетичные, гигаэлектронвольтные и больше. Ученые предполагают, что многие из них образовались еще в момент Большого взрыва, другие — результат ядерных реакций в звездах, планетах и других космических процессов, в частности, столкновения черных дыр.
Высокоэнергетические нейтрино особенно интересуют физиков. К сожалению, их не обнаружить напрямую: они лишены электрического заряда, а значит, не ионизируют материалы, через которые проходят.
 
Для регистрации нейтрино используют установки с носителем большой массы, так как, несмотря на огромное общее количество, только некоторые из них оставляют след. Иногда — очень редко — нейтрино взаимодействует с электроном, передавая ему часть энергии. Это напоминает упругое столкновение бильярдных шаров.
Электрон, получив некоторую начальную скорость, теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при этом излучается в виде фотонов, разлетающихся во все стороны. Эти фотоны регистрируют тысячи сенсоров, а специальные приборы — фотоэлектронные умножители — позволяют оценить энергию, переданную электрону, и определить точку, где произошло столкновение.
С середины нулевых строят нейтринные обсерватории, способные фиксировать космические нейтрино. Сейчас таких установок в мире три. Американская IceCube находится в Антарктиде, глубоко в толще льда в районе Южного полюса. У России есть подводный Байкальский нейтринный телескоп, известный также как проект Baikal-GVD. Французский ANTARES работает на глубине 2400 метров в Средиземном море. Это часть крупного европейского проекта KM3NeT, к которому присоединятся итальянский NEMO и греческий NESTOR. Нейтринные обсерватории оборудуют глубоко под землей, в толще льда или воды, чтобы изолировать детекторы от фонового излучения, в том числе космического.

Рожденные квазарами

Впервые нейтрино высоких энергий зарегистрировали 29 января 2006 года на установке IceCube. С тех пор их фиксировали неоднократно, но где они рождаются, было непонятно. Искали в гамма-лучах, поскольку считалось, что эти частицы должны возникать вместе с гамма-излучением.
В 2020-м российские астрофизики из Физического института имени П. Н. Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Института ядерных исследований РАН (ИЯИ РАН) во главе с член-корреспондентом РАН Юрием Ковалевым выявили связь между высокоэнергетическими нейтрино и вспышками квазаров — активных центров далеких галактик, где сверхмассивные черные дыры поглощают окружающее вещество. Ученые предположили, что при падении вещества на черную дыру часть потока частиц выбрасывается обратно, ускоряется и рождает нейтрино, которые затем со скоростью света летят сквозь Вселенную.
 
Эту гипотезу проверили на данных радиоастрономического телескопа РАТАН-600, расположенного на Северном Кавказе. Действительно, оказалось, что нейтрино сверхвысоких энергий — более 200 тераэлектронвольт — образуются в квазарах с массивными черными дырами, аккреционными дисками и выбросами очень горячего газа.
Через год та же группа физиков пришла к выводу: все космические нейтрино, даже с энергией в десятки тераэлектронвольт, порождаются квазарами. До этого думали, что для возникновения частиц, энергия которых различается на два-три порядка, нужны разные физические условия.

Галактические нейтрино

Недавно ученые из IceCube Collaboration обнаружили эмиссию нейтрино высоких энергий из активной галактики NGC 1068 в созвездии Кита, также известной как Messier 77, — одной из наиболее изученных.
Но настоящую сенсацию произвела очередная публикация российских ученых, сумевших выделить из общего потока космических нейтрино те, что из нашей Галактики. А началось все с единичного события.
"В Баксанской нейтринной обсерватории зафиксировали вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube. Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино — не доказательство. Могло быть простое совпадение", - рассказывает один из участников исследования член-корреспондент РАН Сергей Троицкий из ИЯИ РАН.

Чтобы отличить нейтрино Млечного Пути от частиц из других галактик, физики создали специальный алгоритм и обработали его на данных с IceCube. Выяснилось, что около трети летящих к нам из космоса высокоэнергетических нейтрино происходят от внутригалактических источников. Если точнее — 28% потока с энергиями больше 200 тераэлектронвольт. Причем большая часть сосредоточена в достаточно широкой области вблизи галактической плоскости. С чем это связано, еще предстоит разобраться.

"Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений. Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности — 99,996%, достаточно редкий в нейтринной астрофизике, где много неопределенностей и мало качественных данных", — объясняет другой автор статьи, кандидат наук из ФИАН Александр Плавин.

Ученые предполагают, что по крайней мере часть галактических нейтрино высоких энергий возникает в результате взаимодействия космических лучей с диффузным веществом и излучением в Млечном Пути.

Астрофизики надеются, что дальнейшие наблюдения за внутригалактическим нейтринным излучением помогут лучше понять происхождение и устройство Галактики.

https://ru.armeniasputnik.am/20221208/uchenye-razglyadeli-v-mlechnom-puti-kosmicheskuyu-sensatsiyu-52359275.html

08.12.22 08.12.2022 News2world.net. Космическая сенсация. Что увидели ученые в Млечном Пути

МОСКВА, 8 декабря —, Владислав Стрекопытов. Российские астрофизики зарегистрировали поток нейтрино, рожденных в нашей Галактике. Ранее предполагали, что в нейтринном излучении пролегает частицы от внутригалактических источников, но не могли их прочного идентифицировать. Теперь удалось отделить их от остальных и сравнить количество. Оказалось, что на нейтрино Млечного Пути приходится около одной трети всех высокоэнергетических частиц, достигающих Земли.

Даже массу этой частицы ученые до сих пор не знают, настолько она маленькая. Нейтрино спокойного пересекают Вселенную, практически не взаимодействуя с веществом. Сквозь предметы, людей и всю планету их пролетают триллионы в секунду.

Частицы с низкими энергиями (десятки мегаэлектронвольт) приходят к нам от Солнца (солнечные нейтрино), рождаются в реакциях распада в недрах нашей планеты (геонейтрино) или в ядерных реакторах. Из дальнего космоса — высокоэнергетичные, гигаэлектронвольтные и больше. Ученые предполагают, что многие из них образовались еще в момент Большого взрыва, другие — результат ядерных реакций в звездах, планетах и других мировых процессов, в частности столкновения черных дыр.

Высокоэнергетические нейтрино особенно увлекают физиков. К сожалению, их не обнаружить напрямую: они лишены электрического заряда, а значит, не ионизируют материалы, через которые проскользнут.

Для регистрации нейтрино используют установки с носителем большой массы, так как, несмотря на огромное общее количество, только кое-какие из них оставляют след. Иногда — очень редко — нейтрино взаимодействует с электроном, передавая ему часть энергии. Это напоминает упругое столкновение бильярдных шаров.

Электрон, получив некоторую исходную скорость, теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при данном излучается в виде фотонов, разлетающихся во все стороны. Эти фотоны регистрируют тысячи рецепторов, а специальные приборы — фотоэлектронные умножители — позволяют сравнить энергию, переданную электрону, и определить точку, где произошло столкновение.

С середины нулевых выстраивают нейтринные обсерватории, способные фиксировать космические нейтрино. Сейчас эдаких установок в мире три. Американская IceCube находится в Антарктиде, глубоко в толще льда в районе Южного полюса. У России есть подводный Байкальский нейтринный телескоп, известный также как проект Baikal-GVD. Французский ANTARES работает на глубине 2400 метров в Средиземном море. Это часть крупного европейского проект для автомата KM3NeT, к которому примкнут итальянский NEMO и греческий NESTOR. Нейтринные обсерватории оборудуют действительного под землей, в толще льда или воды, чтобы изолировать детекторы от фонового излучения, в том числе мирового.

Впервые нейтрино высоких энергий зарегистрировали 29 января 2006-го на установке IceCube. С тех пор их фиксировали неоднократно, но, где они рождаются, было непонятно. Искали в гамма-лучах, поскольку считалось, что эти частицы должны возникать вместе с гамма-излучением.

В 2020-м российские астрофизики из Физического института имени П. Н. Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Института ядерных исследований РАН (ИЯИ РАН) во коноводу с член-корреспондентом РАН Юрием Ковалевым выявили связь между высокоэнергетическими нейтрино и вспышками квазаров — динамичных центров далеких галактик, где сверхмассивные черные дыры поглощают окружающее вещество. Ученые предположили, что при падении вещества на черную дыру часть потока крупиц выбрасывается обратно, ускоряется и рождает нейтрино, которые затем со скоростью света летят сквозь Вселенную.

Эту гипотезу проверили на г. красногорсков радиоастрономического телескопа РАТАН-600, организованного на Северном Кавказе. Действительно, оказалось, что нейтрино сверхвысоких энергий — более 200 тераэлектронвольт — образуются в квазарах с массивными черными дырами, аккреционными дисками и выбросами очень горячего газа.

Через год та же группа физиков пришла к совету: все космические нейтрино, даже с энергией в червонцы тераэлектронвольт, порождаются квазарами. До этого думали, что для возникновения частиц, деятельность которых различается на два-три лада, нужны разные физические условия.

Недавно ученые из IceCube Collaboration оказали эмиссию нейтрино высоких энергий из активной галактики NGC 1068 в созвездии Кита, также известной как Messier 77, — одной из наиболее изученных.

Но самый настоящую сенсацию произвела очередная публикация отечественных ученых, сумевших выделить из общего потока космических нейтрино те, что из нашей Галактики. А началось все с единичного события.

В Баксанской нейтринной обсерватории зафиксировали вспышку галактического источника одновременно с приходом нейтрино высокой деятельности, зарегистрированным IceCube, — рассказывает один из участников исследования член-корреспондент РАН Сергей Троицкий из ИЯИ РАН. — Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино — не доказательство. Могло быть простое совпадение.

Чтобы различить нейтрино Млечного Пути от крупиц из других галактик, преподаватели создали специальный алгоритм и убедили его на данных с IceCube. Выяснилось, что около трети летящих к нам из космоса высокоэнергетических нейтрино происходят от внутригалактических источников. Если точнее — 28 процентов потока с энергиями больше 200 тераэлектронвольт. Причем большая часть сосредоточена в достаточно широкой области вблизи галактической плоскости. С чем это связано, еще предстоит прояснить.

Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений, — разъясняет другой автор статьи, кандидат наук из ФИАН Александр Плавин. — Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и посмотрели в них Млечный Путь. Уровень достоверности — 99, 996 процента, достаточно редкий в нейтринной астрофизике, где появилось много неопределенностей и мало качественных данных.

Ученые предполагают, что, по крайней мере, часть галактических нейтрино высоких энергий возникает в результате взаимодействия космических лучей с диффузным веществом и излучением в Млечном Пути.

Новые, более современные нейтринные эксперименты в Северном полушарии — Baikal-GVD и KM3NeT — позволят подробнее изучить область галактического центра, — отмечает Юрий Ковалев. — А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью говорим, что нейтринное небо не такое простое — большой вклад в поток причиняют источники совершенно разных классов, как галактические, так и внегалактические.

Астрофизики надеются, что последующие наблюдения за внутригалактическим нейтринным излучением помогут лучше понять происхождение и устройство нашей Галактики.

https://news2world.net/novosti-nauki-i-tehnologij/kosmicheskaya-sensatsiya-chto-uvideli-uchenie-v-mlechnom-puti.html

08.12.22 08.12.2022 Sputnik Грузия. Космическая сенсация. Что увидели ученые в Млечном Пути

Млечный путь звездное небо

Российские астрофизики зарегистрировали поток нейтрино, рожденных в нашей Галактике
Ранее предполагали, что в нейтринном излучении есть частицы от внутригалактических источников, но не могли их надежно идентифицировать. Теперь удалось отделить их от остальных и оценить количество.
Оказалось, что на нейтрино Млечного Пути приходится около одной трети всех высокоэнергетических частиц, достигающих Земли. Подробнее в материале автора РИА Новости Владислава Стрекпоытова.

Как ловят космические нейтрино

Даже массу этой частицы ученые до сих пор не знают, настолько она маленькая. Нейтрино беспрепятственно пересекают Вселенную, практически не взаимодействуя с веществом. Сквозь предметы, людей и всю планету их пролетают триллионы в секунду.
 

Частицы с низкими энергиями (десятки мегаэлектронвольт) приходят к нам от Солнца (солнечные нейтрино), рождаются в реакциях распада в недрах нашей планеты (геонейтрино) или в ядерных реакторах. Из дальнего космоса — высокоэнергетичные, гигаэлектронвольтные и больше. Ученые предполагают, что многие из них образовались еще в момент Большого взрыва, другие — результат ядерных реакций в звездах, планетах и других космических процессов, в частности столкновения черных дыр.

 
Высокоэнергетические нейтрино особенно интересуют физиков. К сожалению, их не обнаружить напрямую: они лишены электрического заряда, а значит, не ионизируют материалы, через которые проходят.
Для регистрации нейтрино используют установки с носителем большой массы, так как, несмотря на огромное общее количество, только некоторые из них оставляют след. Иногда — очень редко — нейтрино взаимодействует с электроном, передавая ему часть энергии. Это напоминает упругое столкновение бильярдных шаров.
Электрон, получив некоторую начальную скорость, теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при этом излучается в виде фотонов, разлетающихся во все стороны. Эти фотоны регистрируют тысячи сенсоров, а специальные приборы — фотоэлектронные умножители — позволяют оценить энергию, переданную электрону, и определить точку, где произошло столкновение.
С середины нулевых строят нейтринные обсерватории, способные фиксировать космические нейтрино. Сейчас таких установок в мире три. Американская IceCube находится в Антарктиде, глубоко в толще льда в районе Южного полюса. У России есть подводный Байкальский нейтринный телескоп, известный также как проект Baikal-GVD. Французский ANTARES работает на глубине 2400 метров в Средиземном море. Это часть крупного европейского проекта KM3NeT, к которому присоединятся итальянский NEMO и греческий NESTOR. Нейтринные обсерватории оборудуют глубоко под землей, в толще льда или воды, чтобы изолировать детекторы от фонового излучения, в том числе космического.

Рожденные квазарами

Впервые нейтрино высоких энергий зарегистрировали 29 января 2006-го на установке IceCube. С тех пор их фиксировали неоднократно, но где они рождаются, было непонятно. Искали в гамма-лучах, поскольку считалось, что эти частицы должны возникать вместе с гамма-излучением.
В 2020-м российские астрофизики из Физического института имени П. Н. Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Института ядерных исследований РАН (ИЯИ РАН) во главе с член-корреспондентом РАН Юрием Ковалевым выявили связь между высокоэнергетическими нейтрино и вспышками квазаров — активных центров далеких галактик, где сверхмассивные черные дыры поглощают окружающее вещество. Ученые предположили, что при падении вещества на черную дыру часть потока частиц выбрасывается обратно, ускоряется и рождает нейтрино, которые затем со скоростью света летят сквозь Вселенную.
 

Эту гипотезу проверили на данных радиоастрономического телескопа РАТАН-600, расположенного на Северном Кавказе. Действительно, оказалось, что нейтрино сверхвысоких энергий — более 200 тераэлектронвольт — образуются в квазарах с массивными черными дырами, аккреционными дисками и выбросами очень горячего газа.

 
Через год та же группа физиков пришла к выводу: все космические нейтрино, даже с энергией в десятки тераэлектронвольт, порождаются квазарами. До этого думали, что для возникновения частиц, энергия которых различается на два-три порядка, нужны разные физические условия.

Галактические нейтрино

Недавно ученые из IceCube Collaboration обнаружили эмиссию нейтрино высоких энергий из активной галактики NGC 1068 в созвездии Кита, также известной как Messier 77, — одной из наиболее изученных.
Но настоящую сенсацию произвела очередная публикация российских ученых, сумевших выделить из общего потока космических нейтрино те, что из нашей Галактики. А началось все с единичного события.
 

"В Баксанской нейтринной обсерватории зафиксировали вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube, — рассказывает один из участников исследования член-корреспондент РАН Сергей Троицкий из ИЯИ РАН. — Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино — не доказательство. Могло быть простое совпадение".

 
Чтобы отличить нейтрино Млечного Пути от частиц из других галактик, физики создали специальный алгоритм и обработали его на данных с IceCube. Выяснилось, что около трети летящих к нам из космоса высокоэнергетических нейтрино происходят от внутригалактических источников. Если точнее — 28 процентов потока с энергиями больше 200 тераэлектронвольт. Причем большая часть сосредоточена в достаточно широкой области вблизи галактической плоскости. С чем это связано, еще предстоит разобраться.
"Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений, — объясняет другой автор статьи, кандидат наук из ФИАН Александр Плавин. — Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности — 99,996 процента, достаточно редкий в нейтринной астрофизике, где много неопределенностей и мало качественных данных".
Ученые предполагают, что, по крайней мере, часть галактических нейтрино высоких энергий возникает в результате взаимодействия космических лучей с диффузным веществом и излучением в Млечном Пути.
"Новые, более современные нейтринные эксперименты в Северном полушарии — Baikal-GVD и KM3NeT — позволят подробнее изучить область галактического центра, — отмечает Юрий Ковалев. — А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью говорим, что нейтринное небо не такое простое — большой вклад в поток вносят источники совершенно разных классов, как галактические, так и внегалактические".
Астрофизики надеются, что дальнейшие наблюдения за внутригалактическим нейтринным излучением помогут лучше понять происхождение и устройство нашей Галактики.

https://sputnik-georgia.ru/20221208/kosmicheskaya-sensatsiya-chto-uvideli-uchenye-v-mlechnom-puti-272816718.html

08.12.22 08.12.2022 РИА Новости. Космическая сенсация. Что увидели ученые в Млечном Пути

Млечный Путь в долине реки Анга, которая впадает в озеро Байкал

МОСКВА, 8 дек — РИА Новости, Владислав Стрекопытов. Российские астрофизики зарегистрировали поток нейтрино, рожденных в нашей Галактике. Ранее предполагали, что в нейтринном излучении есть частицы от внутригалактических источников, но не могли их надежно идентифицировать. Теперь удалось отделить их от остальных и оценить количество. Оказалось, что на нейтрино Млечного Пути приходится около одной трети всех высокоэнергетических частиц, достигающих Земли.

Как ловят космические нейтрино

Даже массу этой частицы ученые до сих пор не знают, настолько она маленькая. Нейтрино беспрепятственно пересекают Вселенную, практически не взаимодействуя с веществом. Сквозь предметы, людей и всю планету их пролетают триллионы в секунду.
 
Частицы с низкими энергиями (десятки мегаэлектронвольт) приходят к нам от Солнца (солнечные нейтрино), рождаются в реакциях распада в недрах нашей планеты (геонейтрино) или в ядерных реакторах. Из дальнего космоса — высокоэнергетичные, гигаэлектронвольтные и больше. Ученые предполагают, что многие из них образовались еще в момент Большого взрыва, другие — результат ядерных реакций в звездах, планетах и других космических процессов, в частности столкновения черных дыр.
 
Высокоэнергетические нейтрино особенно интересуют физиков. К сожалению, их не обнаружить напрямую: они лишены электрического заряда, а значит, не ионизируют материалы, через которые проходят.
Для регистрации нейтрино используют установки с носителем большой массы, так как, несмотря на огромное общее количество, только некоторые из них оставляют след. Иногда — очень редко — нейтрино взаимодействует с электроном, передавая ему часть энергии. Это напоминает упругое столкновение бильярдных шаров.
Электрон, получив некоторую начальную скорость, теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при этом излучается в виде фотонов, разлетающихся во все стороны. Эти фотоны регистрируют тысячи сенсоров, а специальные приборы — фотоэлектронные умножители — позволяют оценить энергию, переданную электрону, и определить точку, где произошло столкновение.
С середины нулевых строят нейтринные обсерватории, способные фиксировать космические нейтрино. Сейчас таких установок в мире три. Американская IceCube находится в Антарктиде, глубоко в толще льда в районе Южного полюса. У России есть подводный Байкальский нейтринный телескоп, известный также как проект Baikal-GVD. Французский ANTARES работает на глубине 2400 метров в Средиземном море. Это часть крупного европейского проекта KM3NeT, к которому присоединятся итальянский NEMO и греческий NESTOR. Нейтринные обсерватории оборудуют глубоко под землей, в толще льда или воды, чтобы изолировать детекторы от фонового излучения, в том числе космического.

Подледная нейтринная обсерватория IceCube в Антарктиде

Рожденные квазарами

Впервые нейтрино высоких энергий зарегистрировали 29 января 2006-го на установке IceCube. С тех пор их фиксировали неоднократно, но где они рождаются, было непонятно. Искали в гамма-лучах, поскольку считалось, что эти частицы должны возникать вместе с гамма-излучением.
 
В 2020-м российские астрофизики из Физического института имени П. Н. Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Института ядерных исследований РАН (ИЯИ РАН) во главе с член-корреспондентом РАН Юрием Ковалевым выявили связь между высокоэнергетическими нейтрино и вспышками квазаров — активных центров далеких галактик, где сверхмассивные черные дыры поглощают окружающее вещество. Ученые предположили, что при падении вещества на черную дыру часть потока частиц выбрасывается обратно, ускоряется и рождает нейтрино, которые затем со скоростью света летят сквозь Вселенную.
Эту гипотезу проверили на данных радиоастрономического телескопа РАТАН-600, расположенного на Северном Кавказе. Действительно, оказалось, что нейтрино сверхвысоких энергий — более 200 тераэлектронвольт — образуются в квазарах с массивными черными дырами, аккреционными дисками и выбросами очень горячего газа.
Через год та же группа физиков пришла к выводу: все космические нейтрино, даже с энергией в десятки тераэлектронвольт, порождаются квазарами. До этого думали, что для возникновения частиц, энергия которых различается на два-три порядка, нужны разные физические условия.
 

Схема нейтринной обсерватории IceCube

Галактические нейтрино

Недавно ученые из IceCube Collaboration обнаружили эмиссию нейтрино высоких энергий из активной галактики NGC 1068 в созвездии Кита, также известной как Messier 77, — одной из наиболее изученных.
 
Но настоящую сенсацию произвела очередная публикация российских ученых, сумевших выделить из общего потока космических нейтрино те, что из нашей Галактики. А началось все с единичного события.
"В Баксанской нейтринной обсерватории зафиксировали вспышку галактического источника одновременно с приходом нейтрино высокой энергии, зарегистрированным IceCube, — рассказывает один из участников исследования член-корреспондент РАН Сергей Троицкий из ИЯИ РАН. — Это было первым свидетельством того, что нейтрино в галактических источниках действительно рождаются. Но одно нейтрино — не доказательство. Могло быть простое совпадение".
Чтобы отличить нейтрино Млечного Пути от частиц из других галактик, физики создали специальный алгоритм и обработали его на данных с IceCube. Выяснилось, что около трети летящих к нам из космоса высокоэнергетических нейтрино происходят от внутригалактических источников. Если точнее — 28 процентов потока с энергиями больше 200 тераэлектронвольт. Причем большая часть сосредоточена в достаточно широкой области вблизи галактической плоскости. С чем это связано, еще предстоит разобраться.
 

Направления прихода 70 изученных событий IceCube (белые точки), наложенные на гамма-карту всего неба. Цвет на карте отражает интенсивность потока гамма-излучения с энергиями выше 1 гигаэлектронвольт, наблюдаемого космическим гамма-телескопом Fermi. Яркое свечение — плоскость Галактики. Черной звездой отмечен ее центр

"Мы задались вопросом, приходит ли на Землю больше нейтрино от плоскости Галактики, чем с других направлений, — объясняет другой автор статьи, кандидат наук из ФИАН Александр Плавин. — Аккуратно собрали все случаи регистрации высокоэнергетических нейтрино за десять лет наблюдений и увидели в них Млечный Путь. Уровень достоверности — 99,996 процента, достаточно редкий в нейтринной астрофизике, где много неопределенностей и мало качественных данных".
 
Ученые предполагают, что, по крайней мере, часть галактических нейтрино высоких энергий возникает в результате взаимодействия космических лучей с диффузным веществом и излучением в Млечном Пути.
"Новые, более современные нейтринные эксперименты в Северном полушарии — Baikal-GVD и KM3NeT — позволят подробнее изучить область галактического центра, — отмечает Юрий Ковалев. — А пока, ориентируясь на данные IceCube и Baikal-GVD, мы с уверенностью говорим, что нейтринное небо не такое простое — большой вклад в поток вносят источники совершенно разных классов, как галактические, так и внегалактические".
Астрофизики надеются, что дальнейшие наблюдения за внутригалактическим нейтринным излучением помогут лучше понять происхождение и устройство нашей Галактики.

Фото спиральной галактики Messier 77, сделанное космическим телескопом "Хаббл"

https://ria.ru/20221208/neytrino-1836983857.html

08.12.22 08.12.2022 Полит.ру. Сверхпроводимость и магнетизм — соединение несовместимого

Сверхпроводимость и магнетизм — антагонисты: сильное магнитное поле разрушает сверхпроводящее состояние, а сверхпроводники "выталкивают" магнитные силовые линии. Именно поэтому сверхпроводящие предметы могут левитировать в магнитном поле. Теперь ученые из Физического института имени П. ;Н. Лебедева РАН обнаружили, что эти противоположности могут сходиться: сверхпроводник EuRbFe4As4 может демонстрировать магнитные свойства, не теряя сверхпроводимости, что открывает новые возможности для создания нового поколения вычислительных устройств на базе спинтронных элементов. О полученном результате сообщает пресс-служба ФИАН.

«Раньше считалось, что сверхпроводимость и магнетизм — это вода и огонь, они друг друга убивают. В этом слоистом соединении они не только живут вместе и расположены "через ряд", являются соседями, но и внутри этого материала магнитное взаимодействие осуществляется через сверхпроводник. То есть магнитные слои, между которыми расположены сверхпроводящие, друг друга "чувствуют". При этом в каждом следующем слое направление спинов атомов европия повернуто на 90 градусов», — говорит ведущий автор исследования Кирилл Перваков, научный сотрудник Центра высокотемпературной сверхпроводимости и квантовых материалов имени В. Л. Гинзбурга ФИАН.

Сверхпроводимость была открыта более 100 лет назад, когда физики обнаружили, что при сверхнизких температурах некоторые материалы теряют сопротивление и проводят электрический ток без тепловых потерь. Сверхпроводники уже подарили человечеству высокоскоростные левитирующие поезда-маглевы, магнитно-резонансную томографию, ускорители частиц. Ученые рассчитывают, что в будущем сверхпроводящие элементы могут помочь создать электронные устройства на новых принципах.

С 1980-х годов известны так называемые магнитные сверхпроводники — материалы, в которых при понижении температуры сначала возникает сверхпроводимость, а при последующем охлаждении появляется собственное магнитное поле. Однако при дальнейшем снижении температуры сверхпроводимость разрушается.

До недавнего времени температуры сверхпроводящего перехода в таких магнитных сверхпроводниках были довольно низкими и не превышали 10 градусов Кельвина. Но всё изменилось в 2008 году с открытием сверхпроводников на основе железа и мышьяка, которые назвали соединениями 122-го типа. В таких соединениях критическая температура сверхпроводящего перехода находилась в диапазоне от 26 до 57 градусов Кельвина. Внутри этого класса в 2016 году были обнаружены соединения с общей формулой AeAFe4As4, где Ae = Ca, Sr, Ba, Eu и A = K, Rb, Cs, которые условно называют соединениями 1144-го типа.

Перваков и его коллеги исследовали соединения типа AEuFe4As4 (A = Rb, Cs), содержащие европий, в которых температура магнитного перехода ниже температуры сверхпроводящего перехода. На первом этапе ученые вырастили монокристалл из рубидия, европия, железа и мышьяка с формулой EuRbFe4As4. Для того чтобы при работе материалы не окислялись, их в перчаточном боксе в атмосфере аргона закладывают в ниобиевые контейнеры и герметично заваривают, затем обрабатывают при температуре 800–900 градусов Цельсия. В результате получились монокристаллы размером до 5 миллиметров. При комнатной температуре они не обладают ни сверхпроводимостью, ни магнетизмом.

Затем исследователи изучили атомную структуру кристаллов и выяснили, что внутри у них есть двумерные нановключения из RbFe2As2 — соединения 122-го типа, которые не являются сверхпроводящими до двух градусов Кельвина.

Далее ученые охлаждали полученные кристаллы и смотрели, как материал проявляет свои сверхпроводящие и магнитные свойства. Для этого они создавали слабое внешнее магнитное поле и с помощью магнитных датчиков, замеряя отклик магнитной системы, оценивали магнитную восприимчивость образца.

Они обнаружили, что монослой с рубидием RbFe2As2 является планарным двухмерным дефектом, на котором закрепляются так называемые вихри Абрикосова — зоны, в которых магнитное поле образует локальные цилиндрические центры «нормального» проводника, по поверхности которых протекает незатухающий сверхпроводящий ток. Это закрепление вихрей похоже на то, как, когда появляются первые льдинки, которые еще не видно в воде, потоки воды огибают их и «цепляются» за них.

Кроме того, по мере уменьшения температуры ученые наблюдали переход материала в сверхпроводящее состояние и эффект Мейсснера — левитации сверхпроводника в магнитном поле — при температуре 36 градусов Кельвина. Далее при 15 градусах Кельвина возникает магнетизм — происходит магнитное упорядочение спинов европия. То есть до магнитного упорядочения они были повернуты произвольно, а ниже этой температуры они все выстраиваются в одном направлении, в каждом слое с европием. Подобным образом ведет себя магнитный порошок, когда выстраивается вдоль линий магнитного поля, попадая в него.

«Мы видим, что в одном соединении сверхпроводимость даже помогает магнетизму в какой-то мере. Можно сказать, что это такой самоупорядоченный аналог гетероструктуры. Раньше предлагались гетероструктуры на основе магнитных материалов и сверхпроводников, но они были объемные: пленка одного, потом пленка другого. И вот так чередовались. Это объемные материалы. А здесь это прямо внутри соединения, естественным образом выстроено: один слой сверхпроводящий, другой слой магнитный», — говорит Кирилл Перваков.

Причем от слоя к слою это направление меняется на 90 градусов: первый слой направлен вправо, следующий влево, и так далее. Но при этом, так как упорядочение каждого слоя направлено в разные стороны, то каждые два слоя, расположенные через один, компенсируют друг друга, и в итоге общее внешнее магнитного поле становится равно нулю. Этот эффект сохраняется при понижении температуры вплоть до двух градусов Кельвина.

«То, что они поворачиваются от слоя к слою, значит, что они друг друга "чувствуют", взаимодействуют. А чувствовать они могут друг друга только через сверхпроводник, через сверхпроводящую плоскость. И это довольно интересно, такое нечасто встретишь. В данном случае это дает возможность попробовать поуправлять спинами европия через сверхпроводимость», — рассказывает Кирилл Перваков.

Результаты работы открывают перед учеными новое направление теоретических и экспериментальных исследований. А также, возможно, соединениям найдут применение при разработке новых сверхпроводящих устройств для спинтроники. Кроме того, выявленная связь между условиями, которые приводили к возникновению магнитного упорядочения, позволит лучше изучить состояния сверхпроводников и управлять ими.

Результаты исследования опубликованы в журнале Nanomaterials

Подкатегории