СМИ о нас
07.10.22 | 07.10.2022 Рамблер. Физики обесцветили искусственный алмаз при помощи света |
Фото: Индикатор
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микро-кодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН» исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
https://news.rambler.ru/science/49474467-fiziki-obestsvetili-iskusstvennyy-almaz-pri-pomoschi-sveta/
07.10.22 | 07.10.2022 Полит.ру. Физики научились обесцвечивать искусственные алмазы |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет — а значит, и ювелирную ценность — алмазов, но также разработать метки для контроля за оборотом драгоценных камней. О работе рассказала пресс-служба Российского научного фонда.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Процесс исследования алмазов. Источник: Сергей Кудряшов
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П. Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М. В. Ломоносова и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, ведущий научный сотрудник и заведующий лабораторией лазерной нанофизики и биомедицины ФИАН Сергей Кудряшов.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров? Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon
06.10.22 | 06.10.2022 NANO NEWS NET. Физики обесцветили искусственный алмаз при помощи света |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней.
Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления, — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Художественная иллюстрация локального обесцвечивания искусственных алмазов. Источник: Carbon
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН», исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
https://www.nanonewsnet.ru/news/2022/fiziki-obestsvetili-iskusstvennyi-almaz-pri-pomoshchi-sveta
06.10.22 | 06.10.2022 РНФ. В России научились очищать синтетические алмазы от дефектов при помощи лазеров |
Российские ученые разработали подход, позволяющий использовать лазеры для очистки искусственных алмазов от большинства присутствующих в них дефектов в виде атомов азота и прочих элементов, встроившихся в кристаллическую решетку из атомов углерода. Этот подход позволит увеличить качество и прозрачность производимых алмазов, сообщила в четверг пресс-служба Российского научного фонда (РНФ).
Художественная иллюстрация локального обесцвечивания искусственных алмазов. Источник: Carbon
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки новых способов контроля за оборотом искусственных алмазов», — заявил ведущий научный сотрудник Физического института РАН (Москва) Сергей Кудряшов, чьи слова приводит пресс-служба РНФ.
На сегодняшний день значительная масса алмазов, используемых в различных абразивных материалах и для решения других промышленных задач, производится искусственным путем из дешевого углеродного сырья. Главной причиной этого является то, что на синтез алмазов тратится меньше энергии и средств, чем на их добычу из недр Земли.
Существующие методики производства синтетических алмазов обладают несколькими существенными недостатками. В частности, наиболее общепринятые подходы, в том числе взрывной синтез драгоценных камней, не позволяют получать однообразные наноалмазы, имеющие схожие размеры и свойства. В дополнение драгоценные камни часто содержат в себе дефекты — вкрапления атомов азота и других элементов, влияющих на цвет, прозрачность и другие свойства алмазов.
Лазерная очистка алмазов
Кудряшов и его коллеги разработали инновационный подход, позволяющий избавиться от большинства подобных дефектов и тем самым повысить качество искусственных драгоценных камней. Ученые совершили это открытие в ходе наблюдений за тем, как с лазерным излучением взаимодействуют синтетические алмазы, окрашенные в частично красный оттенок.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения», — пояснил Кудряшов.
Последующие наблюдения показали, что высокочастотная обработка алмазов при помощи лазера привела к обесцвечиванию и исчезновению большинства дефектов в тех точках, которые были облучены лазерными импульсами. Как предполагают исследователи, это произошло из-за того, что атомы азота были «выбиты» излучением или же соединились в более крупные группы, не взаимодействующие с видимым светом.
Процесс исследования алмазов. Источник: Сергей Кудряшов
Этот подход, как отмечают исследователи, можно использовать не только для очистки искусственных алмазов от дефектов, но и для внесения незаметных для глаза узоров и сообщений, закодированных в виде набора из атомов азота или прочих точечных дефектов внутри толщи этих драгоценных камней. Это позволит создать систему контроля за оборотом искусственных алмазов, подытожили ученые.
Источник: ТАСС
https://rscf.ru/news/presidential-program/nauchilis-ochishchat-sinteticheskie-almazy-ot-defektov/
06.10.22 | 06.10.2022 RT Наука. Цвет алмазов |
Учёные из Физического института имени П.Н. Лебедева РАН, МГУ имени М.В. Ломоносова, ИТЭР-Центра и ООО «ВЕЛМАН» (Новосибирск) предложили способ, позволяющий изменить окраску искусственных алмазов. Об этом RT сообщили в пресс-службе РНФ.
Для эксперимента исследователи взяли алмазы красного цвета, лабораторно выращенные под действием высоких температур и давления. Специалисты облучали искусственные кристаллы лазером и смогли точечно обесцветить их за счёт влияния на структуру центров окраски.
Таким образом авторы смогли изменить оптические свойства алмазов.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем как изменить цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — отмечают учёные.
06.10.22 | 06.10.2022 ТАСС. В России научились очищать синтетические алмазы от дефектов при помощи лазеров |
Российские ученые разработали подход, позволяющий использовать лазеры для очистки искусственных алмазов от большинства присутствующих в них дефектов в виде атомов азота и прочих элементов, встроившихся в кристаллическую решетку из атомов углерода. Этот подход позволит увеличить качество и прозрачность производимых алмазов, сообщила в четверг пресс-служба Российского научного фонда (РНФ).
"Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки новых способов контроля за оборотом искусственных алмазов", - заявил ведущий научный сотрудник Физического института РАН (Москва) Сергей Кудряшов, чьи слова приводит пресс-служба РНФ.
На сегодняшний день значительная масса алмазов, используемых в различных абразивных материалах и для решения других промышленных задач, производится искусственным путем из дешевого углеродного сырья. Главной причиной этого является то, что на синтез алмазов тратится меньше энергии и средств, чем на их добычу из недр Земли.
Существующие методики производства синтетических алмазов обладают несколькими существенными недостатками. В частности, наиболее общепринятые подходы, в том числе взрывной синтез драгоценных камней, не позволяют получать однообразные наноалмазы, имеющие схожие размеры и свойства. В дополнение драгоценные камни часто содержат в себе дефекты - вкрапления атомов азота и других элементов, влияющих на цвет, прозрачность и другие свойства алмазов.
Лазерная очистка алмазов
Кудряшов и его коллеги разработали инновационный подход, позволяющий избавиться от большинства подобных дефектов и тем самым повысить качество искусственных драгоценных камней. Ученые совершили это открытие в ходе наблюдений за тем, как с лазерным излучением взаимодействуют синтетические алмазы, окрашенные в частично красный оттенок.
"Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления - так называемые HPHT-алмазы. Импульсы были очень короткими - всего триллионная доля секунды - и с ультрамалой энергией, но облучали кристалл с большой частотой повторения", - пояснил Кудряшов.
Последующие наблюдения показали, что высокочастотная обработка алмазов при помощи лазера привела к обесцвечиванию и исчезновению большинства дефектов в тех точках, которые были облучены лазерными импульсами. Как предполагают исследователи, это произошло из-за того, что атомы азота были "выбиты" излучением или же соединились в более крупные группы, не взаимодействующие с видимым светом.
Этот подход, как отмечают исследователи, можно использовать не только для очистки искусственных алмазов от дефектов, но и для внесения незаметных для глаза узоров и сообщений, закодированных в виде набора из атомов азота или прочих точечных дефектов внутри толщи этих драгоценных камней. Это позволит создать систему контроля за оборотом искусственных алмазов, подытожили ученые.
https://nauka.tass.ru/nauka/15972909
06.10.22 | 06.10.2022 Поиск. Учёные обесцветили искусственный алмаз при помощи света – Carbon |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенных под действием высоких температур и давления — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микро-кодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН» исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
Пресс-служба Российского научного фонда
06.10.22 | 06.10.2022 Научная Россия. Физики обесцветили искусственный алмаз при помощи света |
Российские ученые предложили способ, который позволяет изменять окраску алмазов. Облучая искусственные кристаллы лазером, они смогли точечно обесцветить их за счет влияния на структуру оптически активных центров (центров окраски). Описанный подход в перспективе позволит не только изменять цвет, а значит, и ювелирную ценность алмазов, но также разработать метки для контроля за оборотом драгоценных камней. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах журнала Carbon.
Процесс исследования алмазов. Источник: Сергей Кудряшов
Последние десятилетия синтетические алмазы стали отличной альтернативой природным — особенно в области оптоэлектроники и спинтроники. Это связано прежде всего с тем, что свойства синтетических кристаллов можно очень широко изменять, например, сделать их практически идеально чистыми. В этом случае в них предельно мало самых простых (одноатомных и двухатомных) оптически активных центров из атомов азота, в том числе центров окраски. Кроме того, можно изменять их структуру и цвет сколько угодно и там, где это нужно, например, при помощи лазера.
Иногда бывает необходимо выполнить обратную задачу — избавиться от центров окраски видимого диапазона и, таким образом, обесцветить кристалл. Сотрудники Физического института имени П.Н. Лебедева РАН (Москва), ООО «ВЕЛМАН» (Новосибирск), Московского государственного университета имени М.В. Ломоносова (Москва) и «ИТЭР-Центр» (Москва) продемонстрировали, как можно это сделать.
«Мы воздействовали лазерными импульсами на алмазы красного цвета торговой марки Imperial Red Diamonds, лабораторно выращенные под действием высоких температур и давления, — так называемые HPHT-алмазы. Импульсы были очень короткими — всего триллионная доля секунды — и с ультрамалой энергией, но облучали кристалл с большой частотой повторения, так что за несколько минут маленькая точка претерпевала десятки миллионов бережных лазерных воздействий», — объясняет руководитель проекта, поддержанного грантом РНФ, Сергей Кудряшов, доктор физико-математических наук, ведущий научный сотрудник и заведующий Лабораторией лазерной нанофизики и биомедицины ФИАН.
Обработка вызывала точечное, хорошо заметное невооруженным взглядом обесцвечивание. Исследователи проверили свойства соответствующих участков по тому, как они взаимодействуют с разным светом — от ультрафиолетового до среднего инфракрасного. Анализ полученных в результате спектров показал, что обработанные участки существенно хуже поглощают излучение видимого и среднего инфракрасного диапазона, которое обычно «съедают» оптически активные одноатомные и двухатомные азотные центры, а значит, последних стало намного меньше.
Поскольку воздействие оказалось успешным, авторы задались фундаментальным вопросом: за счет каких процессов удалось избавиться от оптически активных центров. Поскольку лазерное воздействие локальное, но довольно интенсивное, можно предположить два сценария. С одной стороны, центры могли разрушиться (диссоциировать) непосредственно под действием лазерного излучения. С другой стороны, они могли соединиться друг с другом (агрегировать) с участием лазерно-генерированных дефектов углеродной решетки алмаза. В обоих случаях оптические свойства алмазов меняются.
Дополнительно исследовались спектральные особенности фотолюминесценции, а именно то, как светились обработанные участки в ответ на воздействие излучением зеленой и синей части спектра. Эксперименты показали, что увеличилось содержание более крупных азотных центров окраски, обладающих поглощением в невидимой для глаза ультрафиолетовой части спектра. При этом уменьшались концентрации одно- и двухатомных азотных центров, которые поглощают во всей видимой области спектра.
Художественная иллюстрация локального обесцвечивания искусственных алмазов. Источник: Carbon
Ученые предположили, что с каждым импульсом происходило незначительное локальное повреждение алмазной структуры. Его причина заключается в ионизации атомов углерода и их смещении в поры решетки с образованием вакансий (пустот) и междоузлий. Поскольку структурно-чувствительная спектроскопия комбинационного рассеяния света не показала даже незначительных изменений в углеродной решетке, такие дефекты решетки не накапливаются, а активно взаимодействуют с азотными центрами и присоединяются к ним или же вызывают их агрегацию с соседними центрами. Этот новый процесс является обратным по отношению к ранее обнаруженному этими же исследователями распаду азотных центров под действием лазерно-генерированных вакансий в природных алмазах.
«Наше исследование продемонстрировало, как с помощью лазеров можно изменить окраску, а значит, и свойства искусственного алмаза. Варьируя режимы облучения, мы можем изменить как цвет всего камня, так и создать незаметные глазу, но фиксируемые приборами микрокодировки внутри алмаза. Это очень важно для разработки инновационных способов контроля за оборотом искусственных алмазов», — рассказывает Сергей Кудряшов.
В сотрудничестве с соавтором статьи Виктором Винсом, доктором физико-математических наук, сотрудником ООО «ВЕЛМАН», исследователи планируют инновационные разработки на базе разработанной для синтетических алмазов технологии.
Информация и фото предоставлены пресс-службой Российского научного фонда
Разместила Ирина Усик
https://scientificrussia.ru/articles/fiziki-obescvetili-iskusstvennyj-almaz-pri-pomosi-sveta
05.10.22 | 04.10.2022 Научная Россия. Россия-1 о лауреатах Нобелевской премии по физике 2022 |
Россия-1 о лауреатах Нобелевской премии по физике 2022
Сегодня французскому ученому Алену Аспе, исследователю из Австрии Антону Цайлингеру и американскому ученому Джону Ф. Клаузеру была присуждена Нобелевская премия по физике «за эксперименты с запутанными фотонами, установление нарушения неравенств Белла и новаторство в квантовой информатике».
Решение Нобелевского комитета было основано на том, что работы ученых открыли путь от квантовой теории к квантовым технологиям. Уже сейчас начинают проводиться исследования по созданию квантовых компьютеров, сетей и квантового шифрования с использованием эффекта запутанных квантовых состояний, когда две разделенные частицы ведут себя как единое целое.
«Экспериментам, за которые сегодня была присуждена Нобелевская премия, уже много лет. В нашей лаборатории, например, запутывание квантовых частиц ― основная идея, на которой работает установка», ― прокомментировал награждение научный сотрудник лаборатории «Оптика сложных квантовых систем» ФИАН Дмитрий Трегубов.
Фото: © Johan Jarnestad/The Royal Swedish Academy of Sciences
Корреспондент Никита Ланской
https://scientificrussia.ru/articles/rossia-1-o-laureatah-nobelevskoj-premii-po-fizike-2022
30.11.22 | 30.11.2022 Телеграм-канал Фронт российской науки с Веденеевой. Российские ученые совершили открытие, впервые зарегистрировав нейтринные потоки от Млечного пути |
Откуда к нам летят высоко энергетические нейтрино? Треть-родом из нашей Галактики или её окрестностей. Группа наших астрофизиков из ФИАНа, МФТИ, ИЯИ РАН нашла метод отделить нейтрино домашней Галактики Млечный путь от тех, что летят из более дальних уголков Вселенной https://www.mk.ru/science/2022/11/30/rossiyskie-uchenye-sovershili-otkrytie-vpervye-zaregistrirovav-neytrinnye-potoki-ot-mlechnogo-puti.html
Российские ученые совершили открытие, впервые зарегистрировав нейтринные потоки от Млечного пути - МК