Физики измерили сверхтонкое расщепление в мюонии

Физики из коллаборации Mu-MASS представили результаты второй части своего исследования, посвященного измерению частоты переходов в атоме мюония — связанной системе антимюона и электрона. По совокупности всей работы они не только уточнили лэмбовский сдвиг, но и впервые измерили сверхтонкое расщепление мюония в 2S-состоянии. Кроме того, физики увидели вклады от уровней с n = 3, что открывает дополнительные возможности для поиска Новой физики. Исследование опубликовано в Nature Communications.

История открытия и экспериментов с мюонами достаточно нетривиальная. Все началось с того, что обнаруженный в 1936 году мюон физики приняли за юкавовский пион — мезон-переносчик ядерного взаимодействия. По этой причине его какое-то время называли мю-мезоном. Ошибка окончательно была признана в 1947 году, когда Пауэлл с коллегами нашли настоящие пионы. Сейчас мы знаем, что мюоны — это бесструктурные частицы второго поколения лептонного семейства.

На этом роль мюонов в развитии физики не закончилась. В 2010 году они стали причиной возникновения кризиса, получившего название «загадка радиуса протона». Его сутью стали расхождения в значениях фундаментальных констант, а именно зарядового радиуса протона, полученные с помощью спектроскопии обычного и мюонного водорода. Подробнее об этой проблеме вы можете прочитать в материале «Щель в доспехах», а также в новостях, посвященных попыткам разрешения кризиса (1, 2, 3, 4, 5).

Другим существенным отклонением от Стандартной модели стали данные о мюонном магнитном моменте. Эта величина для всех элементарных частиц отличается от целочисленного значения, предписываемого квантовой механикой, из-за флуктуаций вакуума, поэтому точное значение магнитного момента принято называть аномальным. Измерения аномального магнитного момента мюона, проведенные в 2006 году в Брукхейвенской национальной лаборатории, дали результат, отличающийся от предсказаний теории на 3,7 стандартного отклонения (σ). В 2021 году благодаря усилиям физиков Фермилаба, разрыв усилился до 4,2 сигмы и до сих пор не объяснен.

К мюонной физике приковано внимание множества научных групп, включая коллаборацию Mu-MASS, в которую входят физики из Института Пауля Шерера, Швейцарской высшей технической школы Цюриха и Физического института имени Лебедева РАН (ФИАН). Чуть меньше года назад мы рассказывали, как они измерили лэмбовский сдвиг в мюонии с n = 2. Правда, в тот раз ученые задействовали всего один сверхтонкий подуровень 2S-состояния. В новом исследовании Mu-MASS не только вовлекли в эксперимент другой подуровень, но и возбудили мюоний в состояние с n = 3, что открывает дорогу к новому пласту измерений.

Мюонием называют связанное состояние положительного антимюона с отрицательным электроном. Он очень похож на атом водорода, но отличается от него конечным временем жизни, меньшей массой положительной частицы, а также отсутствием у антимюона структуры, что нивелирует поправки на конечный размер ядра и упрощает интерпретацию положений спектральных линий. Таким образом, разница между энергией уровней 2S и 2P в мюонии, известная как лэмбовский сдвиг, определяется исключительно поправками квантовой электродинамики, что делает эти экзотические атомы привлекательными для поиска Новой физики.

Прямой экспериментальный доступ к лэмбовскому сдвигу в атомах всегда затруднен из-за сверхтонкого расщепления уровней, который в случае мюония довольно существенен. Расстояние между синглетными и триплетными сверхтонкими подуровнями для 2S и 2P примерно равны 557,9 и 186,1 мегагерц, в то время как лэмбовский сдвиг составляет чуть более одного гигагерца. В прошлый раз физики из Mu-MASS исследовали переход из 2S F=1 подуровня в 2P подуровни. В этот раз они использовали 2S F=0 подуровень.

Схема энергетических уровней мюония
 

Схема энергетических уровней мюония
Gianluca Janka et al. / Nature Communications, 2022

Работа установки подробно описана в предыдущей новости. Вкратце, авторы создавали экзотические атомы, бомбардируя фольгу антимюонами. Основной измеряемой величиной в эксперименте была интенсивность линии Лайман-альфа, которую испускало часть атомов мюония, родившаяся в возбужденном 2S состоянии. Но перед этим физики готовили атомы в нужном сверхтонком состоянии и облучали микроволновым импульсом с перестраиваемой частотой, чтобы резонансно перевести возбужденные атомы в 2P состояние и уменьшить интенсивность излучения линии Лайман-альфа.

Если в прошлый раз их интересовал диапазон от 800 до 1600 мегагерц, то для стимулирования новых переходов ученые сканировали частоту в диапазоне от 200 до 1000 мегагерц. Помимо искомого 2S F = 0 — 2P F = 1 перехода вклад в контур давала линия 3S − 3P, что, фактически, стало первым в истории измерением переходов в мюонии с участием уровней c n = 3.

Экспериментальные точки вместе с подгонкой, учитывающей (черная линия) и не учитывающей (серая линия) вклад от уровня 3S (желтый контур). Синим цветом обозначен контур, соответствующий переходу 2S F = 0 — 2P F = 1, оранжевым и зеленым — переходам, исследованным в предыдущей работе.
 

Экспериментальные точки вместе с подгонкой, учитывающей (черная линия) и не учитывающей (серая линия) вклад от уровня 3S (желтый контур). Синим цветом обозначен контур, соответствующий переходу 2S F = 0 — 2P F = 1, оранжевым и зеленым — переходам, исследованным в предыдущей работе.
Gianluca Janka et al. / Nature Communications, 2022

Из результатов измерения физики извлекли значение лэмбовского сдвига, которое оказалось равным 1047,498 (1) мегагерца. Как и прошлое значение, оно находится в согласии с расчетами. Кроме того, комбинация обоих измерений позволила впервые экспериментально получить сверхтонкое расщепление 2S состояния — 559,6(7,2) мегагерца.

Ранее мы рассказывали про спектроскопические измерения другого атома с участием мюонов — мюонного гелия. В этом экзотическом атоме мюон заменяет один из электронов. Это позволило точно измерить размер альфа-частицы.