Шульга Евгений Александрович

Спектры заряженных частиц и факторы ядерной модификации в протон–ядерных ($p+^{208}Pb$) взаимодействиях при энергии 5,02 ТэВ на пару нуклонов в эксперименте ATLAS на БАК

Специальность

01.04.16 — Физика атомного ядра и элементарных частиц

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Автор:

Работа выполнена в Национальном исследовательском ядерном университете «МИФИ» (НИЯУ МИФИ)

Научный руководитель: кандидат физико-математических наук,

Романюк Анатолий Самсонович,

ведущий научный сотрудник НИЯУ МИФИ

Официальные оппоненты: Лохтин Игорь Петрович,

доктор физико-математических наук, Научно-исследовательский институт ядерной физики имени Д.В.Скобельцына

Московского государственного

университета имени М.В.Ломоносова,

ведущий научный сотрудник

Батюня Борис Владимирович,

доктор физико-математических наук, Начальник сектора Лаборатории физики высоких энергий, Объединённого института

ядерных исследований (ОИЯИ)

Ведущая организация: Федеральное государственное бюджетное

учреждение науки «Институт ядерных исследований

Российской Академии наук»

Защита состоится «19» марта 2018 г. в 12 час. 00 мин. на заседании диссертационного совета Д 002.023.04 по защите докторских и кандидатских диссертаций Физического института им. П.Н. Лебедева РАН, конференц-зал, по адресу: г. Москва, Ленинский проспект, д. 53, ФИАН.

С диссертацией можно ознакомиться в библиотеке ФИАН и на сайте www.lebedev.ru, с авторефератом – на сайте ФИАН www.lebedev.ru.

Автореферат разослан « » 2018 г.

Ученый секретарь диссертационного совета Д 002.023.04, доктор физико-математических наук

С. П. Баранов

Общая характеристика работы

Актуальность темы

На специальном семинаре Европейской организации по ядерным исследованиям (CERN) в 2000 году было объявлено об образовании "нового состояния материи" при столкновении тяжёлых ядер на Протонном СуперСинхротроне (SPS), так называемой кварк-глюонной материи (КГМ). Основным свойством новой материи является то, что ее характеристики практически полностью определяются сильными взаимодействиями. При более высоких энергиях Релятивистского Коллайдера Тяжёлых Ионов (RHIC) в Брукхейвенской Национальной Лаборатории (BNL) стало возможным дальнейшее, более детальное изучение образующейся материи, например [6; 7]. В настоящее время, исследования КГМ продолжаются так же и на Большом Адронном Коллайдере (БАК) в СЕRN при существенно более высоких энергиях.

Для исследований свойств КГМ принципиально важным является разделение эффектов начального состояния ядер, например модификации функций распределения партонов (nPDF), и эффектов связанных непосредственно с формированием КГМ, таких как подавление выхода высокоэнергетичных частиц и коллективные эффекты в угловых распределениях частиц. Вклады различных эффектов зависят от геометрии события, определяемой прицельным параметром взаимодействия, который, однако, технически измерить невозможно. Вместо этого, изучаемые величины рассматриваются в зависимости от числа нуклонов, претерпевших неупругое рассеяние в столкновении ядер. Экспериментальные данные разделяются на интервалы центральности, где в центральных взаимодействиях (прицельный параметр стремится к нулю) число взаимодействующих нуклонов максимально, а в периферических столкновениях это число уменьшается. В экспериментальных исследованиях ядро-ядерных (AA) и протон-ядерных (p+A) столкновений для оценочного определения числа нуклонов, участвующих во взаимодействии, $(N_{\rm part})$ используется модель Глаубера, см. [8]. В модели Глаубера налетающая частица последовательно взаимодействует с нуклонами ядра-мишени. Такой подход оправдан при невысоких энергиях. В релятивистском случае налетающая частица взаимодействует сразу с несколькими нуклонами мишени, что приводит к образованию неупругих промежуточных состояний, учет которых был выполнен Грибовым. В работе [9] показано, что при энергиях коллайдеров цветовые флуктуации в модели Глаубера—Грибова приводят к значительному изменению распределения по числу $N_{\rm part}$. Изучение зависимости рождения адронов в p+Pb взаимодействиях на БАК в событиях с низкой и высокой множественностью от числа $N_{\rm part}$, используя обе модели, позволит изучить трёхмерную структуру протона, см. [9].

Результаты изучения столкновений ядер на коллайдерах RHIC и БАК однозначно свидетельствуют о том, что адронные струи (или формирующие их партоны) теряют существенную часть своей энергии при прохождении через КГМ. Одним из наиболее ярких проявлений этого феномена, и в историческом плане первым способом его обнаружения, является измерение подавления выхода адронов высоких энергий в столкновениях тяжелых ядер по сравнению с рр столкновениями на коллайдере RHIC, см. [7]. На определенных значениях импульсов частиц этот эффект достигает фактора 5. В то же время, в асимметричных системах (дейтрон-золото) на RHIC, подавления частиц в распределениях по импульсу обнаружено не было, см. [10].

В случае протон-протонных (pp) или p+A взаимодействий число рождённых частиц значительно меньше чем в столкновениях тяжёлых ядер. Формирование КГМ в таких столкновениях до недавнего времени не считалось возможным, так как в таких системах не достигается плотность энергии, необходимая для осуществления такого фазового перехода, см. [10]. Однако, еще в начале работы БАК, коллаборацией СМS в *pp* столкновениях были обнаружены дальнодействующие по псевдобыстроте азимутальные корреляции заряженных адронов в событиях с высокой множественностью частиц, см. [11]. В АА столкновениях этот эффект интерпретируется как следствие формирования гидродинамического потока, одного из основных сигналов образования КГМ, см. [7]. Обнаружение дальнодействующих азимутальных корреляций в pp, а позже и в р+А взаимодействиях на БАК, не укладывается в сегодняшнее понимание физики процессов ион-ионных столкновений. Если КГМ-подобное состояние может быть создано в существенно меньших, чем ожидалось, системах, то корректное сравнение pp, p+A и AA систем должно дать ответ на вопрос о роли геометрических факторов в условиях формирования КГМ. Если же причиной корреляций являются эффекты начального состояния, или процессы насыщения глюонных состояний (так называемый Colour Glass Condensate), см. [12], то изучение малых систем на БАК открывает новые горизонты для будущих экспериментальных и теоретических исследований. Измерения инклюзивных спектров заряженных частиц и их модификаций в разных системах являются одними из ключевых измерений, необходимых для понимания, физики фазовых переходов, происходящих в ион-ионных столкновениях.

Данная работа посвящена изучению выхода адронов в протон–ядерных вза-имодействиях при помощи детектора ATLAS на БАК. В качестве ядра используется 208-й изотоп свинца (208 Pb), а энергия в системе центра масс составляет $\sqrt{s_{_{\rm NN}}}=5,02$ ТэВ на пару нуклонов. Для оценки начальной геометрии столкновения используются модель Глаубера, и модель Глаубера–Грибова с двумя конечными значениями величины флуктуации цветовых зарядов. Внутренний детектор ATLAS позволяет восстанавливать треки от заряженных адронов в диапазоне поперечных импульсов от 0,1 ГэВ 1 до сотен ГэВ в диапазоне псевдобыстроты $|\eta| < 2,5$, что позволяет получить наиболее полную картину физических процессов в p+Pb взаимодействиях.

Цель работы

Цель данной работы состоит в получении новых экспериментальных данных о рождении заряженных адронов в ультрарелятивистских p+Pb взаимодействиях при энергии $\sqrt{s_{\scriptscriptstyle {
m NN}}}=5,02$ ТэВ. Она включает в себя:

- 1. Измерение инклюзивных спектров заряженных адронов в p+Pb взаимодействиях при энергии $\sqrt{s_{_{
 m NN}}}=5,02$ ТэВ как функции поперечного импульса, псевдобыстроты и быстроты для различных интервалов центральности.
- 2. Коррекцию полученных спектров и оценку систематических погрешности измерений, при помощи результатов Монте-Карло моделирования.
- 3. Расчёт факторов ядерной модификации для заряженных адронов в p+Pb взаимодействиях при энергии $\sqrt{s_{_{\mathrm{NN}}}}=5,02$ ТэВ как функции поперечного импульса, псевдобыстроты (η) и быстроты (y^*) для различных интервалов центральности.
- 4. Получение значений факторов ядерной модификации при использовании в расчётах модели Глаубера и модели цветовой неустойчивости Глаубера— Грибова для $\omega_{\sigma}=0,11$ и $\omega_{\sigma}=0,2$.

 $^{^{1}{\}rm B}$ работе используется система единиц $\hbar=c=1$ и явное упоминание c (ГэВ/c) здесь и далее опущено.

Научная новизна работы

- 1. Впервые получены новые экспериментальные данные для инклюзивных спектров заряженных адронов, как функция поперечного импульса, псевдобыстроты и быстроты в p+Pb взаимодействиях при беспрецедентно высоких энергиях $\sqrt{s_{_{\rm NN}}}=5,02$ ТэB, для восьми интервалов центральности и для диапазонов: $|\eta|<2,3$ и $0,1< p_{\rm T}<189$ ГэB. Все предыдущие измерения инклюзивных спектров заряженных адронов в системе p+A ограничены диапазонами: $|\eta|<1$ и $0,15< p_{\rm T}<120$ ГэB. Новые результаты расширяют область измерений до 2,3 по псевдобыстроте и до 189 ГэВ по поперечному импульсу.
- 2. Получены новые экспериментальные данные о факторах ядерной модификации для заряженных адронов в p+Pb взаимодействиях при энергии $\sqrt{s_{\scriptscriptstyle {\rm NN}}}=5,02$ ТэB, как функция поперечного импульса, псевдобыстроты и быстроты и центральности столкновений:
 - (а) Впервые показано увеличение доли рождённых во взаимодействии протонов в зависимости от быстроты в p+Pb взаимодействиях при $\sqrt{s_{_{\mathrm{NN}}}}=5,02$ ТэВ, при помощи зависимости $R_{p\mathrm{Pb}}$. Новые результаты позволяют расширить интервал быстрот для идентифицированных адронов до $-2 < y^* < 1,5$.
 - (b) Впервые получены факторы ядерной модификации для нескольких интервалов центральности при высоких значениях поперечного импульса, $p_{\rm T} > 30\,\Gamma$ эВ. Новые результаты позволяют проверить влияние эффектов начального состояния на свойства рождающихся частиц для разных интервалов центральности.
- 3. Факторы ядерной модификации впервые представлены при помощи модели Глаубера—Грибова, учитывающей флуктуирующую природу нуклон- нуклонного сечения взаимодействия в p+Pb взаимодействиях. Показано, что учет таких флуктуаций имеет важное значение для понимания результатов измерений факторов ядерной модификации.

Методология и методы исследований

Основными методами исследований являлись:

- \bullet экспериментальное исследование спектров заряженных частиц, рождённых в p+Pb взаимодействиях, при помощи специально сформированных уникальных пучков протонов и ядер свинца на комплексе ускорителей БАК в CERN;
- компьютерное моделирование с использованием метода Монте-Карло, направленное на достижение предельных точностей;
- сопоставление и анализ результатов Монте-Карло моделирования с экспериментальными данными.

Теоретическая база включает, заложенные в Монте-Карло генераторах HIJING, PYTHIA и Herwig++ основы.

Экспериментальная база включает уникальную измерительную аппаратуру эксперимента ATLAS и специализированное программное обеспечение для анализа экспериментальных данных.

Положения, выносимые на защиту

- 1. Разработан и апробирован метод отбора данных и коррекции кинематических распределений заряженных адронов в p+Pb взаимодействиях, использующий результаты Монте-Карло моделирования, вариацию критериев отбора событий и треков частиц. В результате применения метода в работе, диапазон измерений определяется исключительно параметрами детектора и объемом имеющихся данных.
- 2. Измерены распределения заряженных адронов в $p+{\rm Pb}$ взаимодействиях при $\sqrt{s_{_{
 m NN}}}=5,02$ ТэВ:
 - в диапазоне $0, 1 < p_T < 20$ ГэВ для 8-ми интервалов центральности, в 6ти интервалах по (псевдо)быстроте в зависимости от p_T и в зависимости от быстроты, в диапазоне $-2, 3 < y^* < 1, 8$;
 - ullet в диапазоне $4 < p_{
 m T} < 189\,\Gamma$ эВ для 3-х интервалов центральности в зависимости от $p_{
 m T}$, в диапазоне $-2 < y^* < 1, 5$.
- 3. Получены факторы ядерной модификации, в зависимости от поперечного импульса и быстроты в p+Pb взаимодействиях при энергии $\sqrt{s_{_{\mathrm{NN}}}}=$

 $5,02~{\rm ТэВ},$ для диапазонов $-2,3 < y^* < 1,8$ и $0,1 < p_{\rm T} < 189\,{\rm ГэВ},$ интегрально. Установлено, что выход заряженных адронов в области отрицательных быстрот и в диапазоне поперечных импульсов $1 < p_{\rm T} < 10\,{\rm ГэВ}$ больше относительно выхода тех же частиц, измеренного в pp столкновениях. Превышение достигает 2,5 и зависит от интервала центральности. В диапазоне $p_{\rm T} > 10\,{\rm ГэВ}$ в пределах ошибок измерений, факторы ядерной модификации сохраняют постоянные значения, независимо от интервала центральности.

4. Получены факторы ядерной модификации при помощи двух геометрических моделей Глаубера и Глаубера-Грибова с $\omega_{\sigma} = 0, 11$ и $\omega_{\sigma} = 0, 2$. Установлено существенное различие результатов для двух моделей, что свидетельствует о необходимости пересмотра и улучшения подходов, используемых для определения центральности в асимметричных системах, таких как p+Pb.

Теоретическая и практическая значимость работы

Для метода восстановления спектров заряженных адронов в p+Pb взаимодействиях разработаны и апробированы критерии отбора событий и треков. Впоследствии, эти критерии использованы в других физических анализах заряженных адронов международной физической группы по анализу данных в p+Pb взаимодействиях.

Результаты измерения спектров заряженных частиц и факторов ядерной модификации, полученные в работе, расширяют экспериментальный материал и могут быть использованы для совершенствования и тестирования теоретических моделей, направленных на описание модифицированной структуры нуклонов в тяжёлых ядрах.

Экспериментальные результаты впервые получены при помощи модели цветовой неустойчивости Глаубера—Грибова. Эта модель учитывает флуктуирующую природу нуклон—нуклонного сечения взаимодействия в p+Pb взаимодействиях. Этот результат дал импульс к пересмотру и улучшению подходов, используемых для определения центральности в асимметричных системах, см. [13].

Достоверность полученных результатов и выводов

Достоверность результатов обусловлена высокой статистической обеспеченностью экспериментальных данных. Также она определяется стабильностью функционирования всех подсистем детектора ATLAS в период набора данных, использованием стандартного программного обеспечения ATLAS, в том числе средств реконструкции событий и моделирования детектора, и современных пакетов математического моделирования физических процессов методом Монте-Карло. Факторы ядерной модификации, полученные в работе, находятся в согласии с аналогичными измерениями в экспериментах ALICE из [14] и CMS из [15] для $|\eta_{\rm CM}| < 0,3$ и $|\eta_{\rm CM}| < 1$, соответственно.

Вклад автора

Вынесенные на защиту результаты получены автором лично либо при его определяющем участии.

Диссертант принимал активное участие в работе международной физической группы по анализу данных, полученных при изучении столкновений тяжелых ионов (Heavy Ion) эксперимента ATLAS. Им был разработан метод коррекции спектров заряженных адронов и оценки систематических погрешностей в p+Pb взаимодействиях, проведён физический анализ данных по измерению спектров заряженных адронов и вычисление факторов ядерной модификации. Диссертантом непосредственно выполнены все этапы работы: подготовка модельных наборов данных с использованием метода Монте-Карло, поиск оптимальных критериев отбора событий, поиск оптимальных критериев отбора треков, оценка систематических неопределённостей.

Кроме того, диссертант принимал участие в наборе экспериментальных данных и контроле их качества.

Апробация работы

Результаты, выносимые на защиту, прошли апробацию на многих международных научных конференциях и семинарах и были опубликованы в рейтинговых рецензируемых российских и зарубежных научных журналах. Основные результаты диссертационной работы были представлены автором на следующих конференциях:

- International Conference on the Initial Stages of High-Energy Nuclear Collisions (IS 2013; 8-14 сентября 2013 г., О-Грове, Галисия, Испания);
- Международная сессия-конференция Секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий» (17-21 ноября 2014 г., Москва, Россия);
- The 15th conference on strangeness in quark matter (SQM 2015; 6-11 июля 2015 г., Дубна, Россия);
- Quark Matter 2015 25th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (QM 2015; 27 сентября - 3 октября, Кобэ, Япония);
- The 2nd International Conference on Particle Physics and Astrophysics (10-14 октября 2016 г., Москва, Россия),

а так же на научном семинаре "Collider Cross Talk" (21 августа 2014 г., Женева, Швейцария). Полученные автором результаты докладывались другими участниками коллаборации ATLAS на различных международных конференциях.

Публикации

По материалам диссертации опубликовано 5 печатных работ [1–5], из которых 3 - в рецензируемых научных изданиях [1; 3; 4], 2 - в трудах международных конференций [2; 5]. Все 5 работ - в периодических изданиях, которые входят в базы данных Scopus и Web of Science.

Структура и объем диссертации

Диссертация состоит из введения, шести глав и заключения. Полный объём диссертации составляет 134 страницы с 78 рисунками и 14 таблицами. Список литературы содержит 147 наименований.

Содержание работы

В характеристике работы приводится обоснование актуальности темы диссертации, сформулированы цель, выносимые на защиту результаты, отмечены практическое значение и новизна полученных результатов.

Во введении дано общее описание рассматриваемой в работе тематики.

В главе 1 кратко рассмотрены теоретические основы КХД и описан общий подход для изучения эффектов холодной ядерной материи. В главе так же приведен краткий обзор экспериментальных результатов в области изучения эффектов холодной ядерной материи, имеющихся в мире на момент написания диссертационной работы.

В главе даётся описание метода определения центральности в $p+{
m Pb}$ взаимодействиях. Модель Глаубера, лежащая в основе метода оценки $N_{\mathrm{part}},$ характеризуется фиксированным нуклон-нуклонным сечением взаимодействия и не учитывает экранировки. Учет образования неупругих промежуточных состояний был выполнен в модели цветовой неустойчивости Глаубера-Грибова (ЦНГГ/GGCF), см. [16]. Грибов показал, что вклад ядерного экранирования в полное сечение адрон-дейтронного рассеяния может быть выражен через сечение дифракционного рассеяния при переданном импульсе t=0. Математически, это выражается заменой в формуле Глаубера упругого сечения hN при $t\sim 0$ суммой упругого и дифракционного сечений при t=0. Это приводит к увеличению числа многонуклонных взаимодействий и дополнительному вкладу двойного рассеяния в полное сечение, характеризующееся фактором $1 + \omega_{\sigma}$, где $\omega_{\sigma} = \frac{d\sigma(hN \to XN)}{dt} \bigg/ \frac{d\sigma(hN \to hN)}{dt} \bigg|_{t=0}$. В работе используется как стандартная модель Глаубера, которой соответствует $\omega_{\sigma} = 0$, так и значения, $\omega_{\sigma} = 0, 11$ и $\omega_{\sigma} = 0, 2$. Значения ω_{σ} получены в работах [16] и [9], использующих модель ЦНГГ. Первое значение следует из предположения, что полное сечение нуклон-нуклонного взаимодействия $\sigma_{tot}=86\,\mathrm{mf}$ и соответствует параметризации $\sigma_{tot}(s)$, полученной в работе [17]. При вычислении второго значения ω_{σ} использовались результаты измерения полного сечения pp взаимодействия $\sigma_{tot}=94,8\,\mathrm{mf}$ из работы [18].

В работе влияние ядра на структурную функцию нуклона описывается при помощи факторов ядерной модификации, $R_{p\text{Pb}}$, для разных интервалов центральности. Для расчёта $R_{p\text{Pb}}$ используются модель Глаубера и модель ЦНГГ с $\omega_{\sigma}=0,11$ и $\omega_{\sigma}=0,2$. Величина $R_{p\text{Pb}}$, определяется как отношение измеренного в p+Pb взаимодействиях выхода заряженных частиц, $d^2N_{p\text{Pb}}/dy^*dp_T$, нормированного на усреднённое по интервалу значение функции локальной ядерной толщины, $\langle T_{\text{Pb}} \rangle$, к сечению рождения заряженных частиц в pp столкновениях,

 $d^2\sigma_{pp}/dy^*dp_T$:

$$R_{pPb}(p_{T}, y^{*}) = \frac{1}{\langle T_{Pb} \rangle} \frac{1/N_{\text{evt}} d^{2}N_{pPb}/dy^{*}dp_{T}}{d^{2}\sigma_{pp}/dy^{*}dp_{T}}, \qquad (1)$$

где $N_{\rm evt}$ это число $p+{\rm Pb}$ событий. Величина $\langle T_{\rm Pb} \rangle$ связана с $\langle N_{\rm part} \rangle$ и задаётся соотношением $\langle N_{\rm part} \rangle - 1 = \langle T_{\rm Pb} \rangle \sigma_{\rm NN}$, с $\sigma_{\rm NN}$ равным 70 ± 5 мб.

Фактор $R_{p\text{Pb}}$ показывает, как рождение адронов в ядерных столкновениях изменяется по сравнению с протон протонными столкновениями. При сравнении p+Pb столкновений с pp столкновениями на БАК возникает проблема, связанная с тем, что p+Pb столкновения доступны не в системе центра масс. Поэтому для построения $R_{p\text{Pb}}$ результаты необходимо преобразовать используется быстрота частиц в нуклон-нуклонной системе центра масс, y^* . Так как массы легких адронов не восстанавливаются трекинговой системой детектора ATLAS, делается предположение, что все частицы имеют массу пиона. Коррекция на естественное распределение масс делается отдельно, с помощью симуляций, а также учитывая результаты измерений адронов из других экспериментов.

В главе 2 даётся краткое описание установки ATLAS. Детектор ATLAS на БАК практически целиком охватывает телесный угол² вокруг точки взаимодействия. Он состоит из внутреннего трекового детектора, окружённого тонким сверхпроводящим соленоидом, электромагнитными и адронными калориметрами, и мюонным спектрометром, включающим три больших сверхпроводящих тороидальных магнита.

Система внутреннего детектора (Inner Detector, ID) помещена в аксиальное магнитное поле с индукцией $2\,\mathrm{Tn}$ и обеспечивает регистрацию и восстановление треков заряженных частиц в диапазоне псевдобыстроты $|\eta| < 2, 5$. Система ID состоит из трёх систем детекторов: высоко гранулярного кремниевого пиксельного детектора (Pixel Detector); полупроводникового микрострипового детектора (Semiconductor Tracker, SCT); газонаполненного трекового детектора переходного излучения (Transition Radiation Tracker, TRT).

Система калориметров охватывает область псевдобыстроты $|\eta| < 4, 9$. Она разделена на две части: электромагнитный калориметр (Electromagnetic Calorimeter, ECal), предназначенный для точного обнаружения электронов и

²ATLAS использует правую систему координат с началом в номинальной точке взаимодействия в центре детектора и с осью z направленной вдоль оси пучка. Ось x направлена от точки взаимодействия в центр кольца БАК, а ось y направлена наверх. Цилиндрические координаты (r,ϕ) используются в поперечной плоскости, ϕ являктся азимутальным углом вокруг оси z. Псевдобыстрота определена через полярный угол θ как $\eta = -\ln\tan(\theta/2)$. Угловое расстояние измеряется в единицах $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

фотонов, и адронный калориметр (Hadronic Calorimeter, HCAL), предназначенный для измерения энергии адронных ливней. В работе калориметры позволяют восстанавливать адронные струи, используются для определения центральности и отбора событий.

Сцинтилляционный детектор MBTS (Minimum Bias Trigger Scintillators) регистрирует заряженные частицы в области $2,1<|\eta|<3,9$. Он позволяет отбирать события с минимальными критериями, то есть восстанавливать "все" события, которые может зарегистрировать ATLAS.

 ${f B}$ главе ${f 3}$ описывается отбор событий и даётся определение интервалов центральности $p+{
m Pb}$ взаимодействий, используемых в ATLAS.

Измерения проводились при энергиях сталкивающихся пучков БАК: 4 ТэВ для протонов и 1,57 ТэВ на нуклон для ионов свинца (208 Pb). Что дает энергию в системе центра масс $\sqrt{s_{_{\mathrm{NN}}}} = 5,02$ ТэВ на пару нуклонов, и продольное смещение быстроты относительно лабораторной системы координат ATLAS равное $y_{\mathrm{lab}} = 0,465$. Быстрота в лабораторной системе отсчёта ATLAS, y, и быстрота в системе центра масс p+Pb столкновений, y^* , связаны как $y^* = y\pm 0,465$ (зависит от направления пучков). Все конечные результаты представлены для конфигурации, когда положительные значения быстроты соответствуют направлению, в котором движется пучок протонов.

В Таблице 1 приведен список наборов данных, используемых в работе, указаны периоды набора данных, сталкивающейся системы, энергии в системе центра масс и интегральные светимости. Для восстановления спектров заряженных частиц для диапазонов $|\eta| < 2,3$ и $0,1 < p_{\rm T} < 189$ ГэВ используются: p+Рb данные 2012 года для восстановления спектров заряженных частиц с $p_{\rm T} < 22$ ГэВ, и данные 2013 года с большей статистикой для восстановления спектров заряженных частиц с $p_{\rm T} \ge 22$ ГэВ. Для сравнения используются спектры адронов от $p_{\rm T}$ столкновений, которые получены при помощи интерполяции двух наборов данных, с низкой множественностью: $\sqrt{s} = 2,76$ ТэВ и 7 ТэВ; и данные от $p_{\rm T}$ столкновений при $\sqrt{s} = 5,02$ ТэВ.

Для анализа отбирались только события, в которых восстановлена вершина, находящаяся в пределах $|z_{\rm vtx}|<150$ мм, а временная разница между двумя MBTS годоскопами составляет менее 10 нс. События, в которых присутствует более одного столкновения $p+{\rm Pb}$ (множественные события) отбрасываются.

Период	Система	\sqrt{s} , [T ₉ B]	Интегральная светимость
сентябрь 2012	p+Pb	5,02	1 мкб $^{-1}$
март 2011	pp	2,76	$200~{ m H}{ m G}^{-1}$
апрель 2010	pp	7	$130{ m MK}{ m G}^{-1}$
январь-февраль 2013	p+Pb	5,02	$25 \; { m H}{ m G}^{-1}$
ноябрь 2015	pp	5,02	$25 \; { m n}{ m 6}^{-1}$

Таблица 1: Список наборов экспериментальных данных p+Pb и pp, используемых в работе.

Ограничением по области псевдобыстроты ($\Delta \eta^{\text{Pb}} < 2,0$) исключается вклад от электромагнитных и дифракционных процессов, см. [19].

Для определения центральности p+Pb столкновений в эксперименте ATLAS используется полная поперечная энергия, $\Sigma E_{\mathrm{T}}^{\mathrm{Pb}}$, измеренная в секциях переднего калориметра в области псевдобыстрот $3,1<|\eta|<4,9$ соответствующей направлению пучка Pb, см. [19]. Данные разделены на восемь интервалов центральности: 0–1%, 1–5%, 5–10%, 10–20%, 20–30%, 30–40%, 40–60%, 60–90%. Интервал центральности 90–100% исключен из рассмотрения, так как состав событий и погрешность на отбор неупругих p+Pb событий определены недостаточно точно.

Глава 4 описывает анализ спектров заряженных частиц с $p_{\rm T} < 22$ ГэВ. В работе используются треки с поперечным импульсом $p_{\rm T} > 0,1$ ГэВ и псевдобыстротой $|\eta| < 2,3$. Отклик детектора ATLAS и работоспособность алгоритмов восстановления оцениваются с использованием результатов Монте-Карло моделирования.

В работе разработан и апробирован метод, который позволяет получить полностью скорректированные спектры первичных заряженных частиц. Заряженные частицы рождённые непосредственно во взаимодействиях p+Pb или pp и имеющие среднее время жизни больше $0,3\times 10^{-10}$ с, и долгоживущие заряженные частицы, рождённые в результате последующего распада частиц с меньшим временем жизни определены как первичные. Все остальные частицы и их треки считаются вторичными. Метод включает в себя: отбор событий и треков, расчёт и применение коррекций для восстановленных спектров, оценку систематических неопределённостей. Использование при отборе дополнительных ограничений по количеству точек на треке в ID подсистеме и прицельные параметры треков, позволило снизить число ложных и вторичных треков более чем в 2

раза. Для достижения лучшего согласия данных и симуляции, распределения результатов Монте-Карло моделирования по поперечному импульсу перевзвешиваются. Эта процедура позволяет снизить различие данных и симуляции до 1% для распределений параметров треков, используемых для отбора.

Рассчитываются и применяются следующие корректирующие поправки:

- \mathcal{P} минимизирует вклад от оставшихся после отбора ложных и вторичных треков. Эта величина равна доле треков от первичных заряженных частиц среди восстановленных треков.
- $\mathcal{C}_{\mathrm{trk}}$ корректирует неэффективности восстановления треков и их импульса. Поправка определяется как доля первичных заряженных частиц (в интервалах восстановленных p_{T}), для которых в анализе был найден трек, от полного числа сгенерированных первичных заряженных частиц (в интервалах сгенерированных p_{T}). Эта величина представлена на левой стороне Рисунка 1 для нескольких интервалов p_{T} .
- \mathcal{A} корректирует кинематические распределения частиц с учетом их реальной массы. Связана с тем, что при сравнении результатов измерений полученных в разных лабораторных системах, распределения частиц по быстроте пересчитываются в предположении, что масса частиц равна массе пиона. Для получения окончательных результатов, распределения частиц по быстроте и импульсу корректируются с учетом распределений частиц по массам, полученных из моделирования и из других измерений, см. [20]. Эта величина представлена для нескольких интервалов $p_{\rm T}$ на Рисунке 1 справа. Для уменьшения неопределенности измерений, окончательные результаты анализа получены для областей $\mathcal{A} > 0, 9$, см. [4].

Источниками систематических погрешностей измерения спектров заряженных частиц и факторов $R_{p\text{Pb}}$ являются: чувствительность к критериям отбора событий и треков; неточности в описании детектора в Монте-Карло моделировании; различия в составе частиц между экспериментальными данными и результатами Монте-Карло моделирования; и неточности, связанные с определением параметров интервалов центральности и светимости. Для оценки вклада каждого источника используемые в анализе величины варьируются в диапазоне наиболее вероятных отклонений. Основной вклад в величину систематических

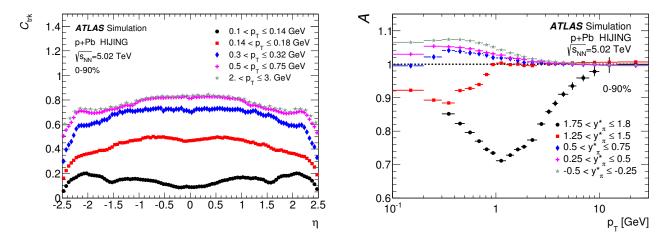


Рис. 1: (слева) $\mathcal{C}_{\mathrm{trk}}$ в зависимости от η , для пяти интервалов p_{T} . (справа) \mathcal{A} в зависимости от p_{T} , для пяти интервалов y^* .

погрешностей вносят неточность определения состава частиц в Монте-Карло, погрешности определения центральности и светимости.

 ${f B}$ главе ${f 5}$ описан анализ спектров заряженных частиц с $p_{
m T} \geq 22$ Гэ ${f B}$. Для восстановления адронов с высокими $p_{\rm T}$ используется метод, описанный в предыдущей главе, в который внесено следующие изменения. Уменьшение кривизны треков заряженных частиц в магнитном поле детектора ATLAS ведет к снижению точности восстановления $p_{\rm T}$, а также к появлению ложных треков, т.е. треков момент которых существенно (в разы) отличается от истинного. Для подавления этого эффекта при отборе треков с $p_{\rm T} > 10~\Gamma$ эВ, дополнительно вводится условие на число сработавших трубок в подсистеме TRT. Это требование снижает вклад от ложных треков, однако, уменьшает область анализируемых псевдобыстрот до $|\eta| < 2$. Поскольку доминирующим механизмом рождения высокоэнергетичных адронов является фрагментация струй, вводится условие на то что треки с $p_{\rm T} > 15~\Gamma$ эВ должны быть восстановлены внутри адронной струи. это условие преследует две цели, во-первых позволяет еще больше подавить вклад от ложных треков, а во-вторых использовать в анализе события, записанные триггерами, чувствительными к струям, что во много раз увеличивает объем анализируемых данных.

Адронные струи восстанавливаются в калориметре детектора ATLAS анти- k_t алгоритмом с параметром R=0,4. Интервалы $p_{\rm T}$ струй определены так, что эффективность триггера составляет не менее 99%. Дополнительно введены ограничения, связанные с балансом энергий трек-струя. В случае $p+{\rm Pb}$ это

 $E_T^{Jet} > 0,8 \times p_T^{Track} - 10$. Для pp ограничение выглядит, как $p_{\mathrm{T}}^{track} < p_{\mathrm{T}}^{jet} \times 1,3,$ см. [5].

Рассчитаны и используются следующие коррекции: поправка на долю вторичных и ложных треков; итеративная деконволюция восстановленного спектра с учётом разрешения детектора по кинематическим переменным; поправка на эффективность восстановления треков, поправка на различие масс частиц. Основной вклад в систематические погрешности приходится на неточности, связанные с Монте-Карло моделированием (деконволюция, критерии отбора) и общей интегральной светимостью, соответствующей данному объему данных. Для погрешностей измерения $R_{p\rm Pb}$ предполагается, что неточности измерения числителя и знаменателя некоррелированы, поэтому полная систематическая погрешность равна сумме парциальных погрешностей.

В главе 6 представлены полученные спектры заряженных адронов и факторы ядерной модификации. На распределениях, представленных в этой главе, статистические погрешности представлены вертикальными линиями, систематические погрешности показаны прямоугольниками того же цвета, на некоторых распределениях систематическая погрешность интервалов центральности представлена отдельно, серой полосой. В работе измерены спектры заряженных частиц, рождённых в p+Pb столкновениях при $\sqrt{s_{\rm NN}}=5,02$ ТэВ, которые представлены для нескольких интервалов η на Рисунке 2 слева. Справа представлен инвариантный выход заряженных частиц в зависимости от y^* для $p_{\rm T}>0,1$ ГэВ и нескольких интервалов центральности. В центральных взаимодействиях распределения становятся более асимметричными, то есть число частиц, рождённых в направлении исходящего ядра Pb, увеличивается быстрее, чем в направлении протона, см. [1]. Распределения, представленные на Рисунке 2, используются для расчёта $R_{p\rm Pb}$.

Значения $R_{p\text{Pb}}$ в зависимости от p_{T} в нескольких интервалах центральности для модели Глаубера и модели ЦНГГ с $\omega_{\sigma}=0,11$ и $\omega_{\sigma}=0,2$ представлены на Рисунке 3. Для интервала центральности 0–1% фактор $R_{p\text{Pb}}$ демонстрирует похожую зависимость на всех панелях. $R_{p\text{Pb}}$ возрастают с увеличением p_{T} , достигая максимального значения при $p_{\text{T}}\sim 3$ ГэВ, а затем снижаются до некоторой постоянной величины в области $p_{\text{T}}\sim 8$ ГэВ. Видно, что выше этого значения соотношения остаются постоянными в пределах экспериментальных погрешностей. В области пика, $1< p_{\text{T}}< 8$ ГэВ, распределения $R_{p\text{Pb}}$ демонстрируют

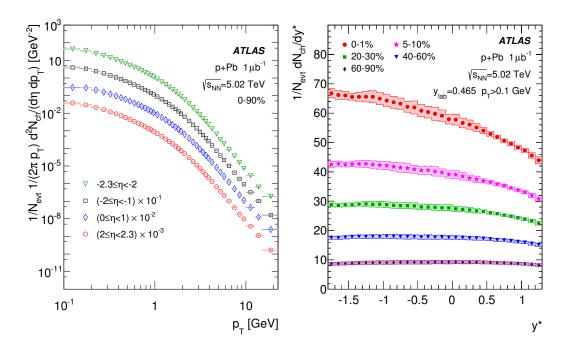


Рис. 2: (слева) $p_{\rm T}$ спектры заряженных частиц для четырёх интервалов псевдобыстроты. (справа) Множественность заряженных частиц в зависимости от y^* для пяти интервалов центральности.

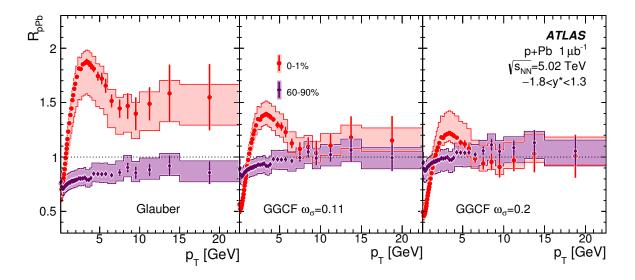


Рис. 3: $R_{p\text{Pb}}$ в зависимости от p_{T} для $-1, 8 < y^* < 1, 3$ и интервалов центральности 0-1% и 60-90%. Для двух геометрических моделей.

более высокие значения для центральных интервалов взаимодействий, чем для периферических. Размер пика зависит от выбора геометрической модели: результаты, полученные при помощи модели Глаубера, демонстрируют значения выше, чем оба варианта модели ЦНГГ. Периферический интервал, 60–90%, де-

монстрирует меньший рост при малых $p_{\rm T}$. Значения $R_{p{\rm Pb}}$ в постоянной области $(p_{\rm T}\gtrsim 8~\Gamma {\rm pB})$ для центрального интервала превышают единицу при использовании модели Глаубера. При использовании модели ЦНГГ с $\omega_{\sigma}=0,11$ и $\omega_{\sigma}=0,2$ область постоянных значений совпадает с единицей. В периферическом интервале центральности $R_{p{\rm Pb}}$ слабо зависят от выбора модели. Независимо от используемой модели в $p+{\rm Pb}$ взаимодействиях не наблюдается подавление, аналогичное ${\rm Pb}+{\rm Pb}$ столкновениям, см. [3].

На Рисунке 4а представлены $R_{p\text{Pb}}$ в зависимости от p_{T} для различных интервалов y^* . В периферических столкновениях значения $R_{p\text{Pb}}$ близки единице и практически не зависят от y^* . Однако, значения $R_{p\text{Pb}}$ для центральных взаимодействий, например 10--20% и 0--1%, зависят от y^* . Для того чтобы подробнее рассмотреть зависимость $R_{p\text{Pb}}$ от y^* получены дополнительные распределения, на Рисунке 4b представлена зависимость от y^* для $2 < p_{\text{T}} < 3$ ГэВ (область пика) и $p_{\text{T}} > 8$ ГэВ (область постоянных значений) для различных интервалов центральности и геометрических моделей. Для обоих областей p_{T} $R_{p\text{Pb}}$ возрастает в направлении исходящего ядра Pb и при переходе к центральным взаимодействиям. Изменения носят более ярко выраженный характер для области пика чем для области постоянных значений. В пределах ошибок измерений значения $R_{p\text{Pb}}$, при использовании модели ЦНГГ, близки к единице для высоких p_{T} .

Спектры заряженных частиц для высоких значений $p_{\rm T}$ для $p+{\rm Pb}$ взаимодействий приведены на Рисунке 5. Факторы ядерной модификации для высоких $p_{\rm T}$, рассчитаны при помощи модели Глаубера, и свидетельствуют о росте числа заряженных частиц с высокими $p_{\rm T}$ в центральных $p+{\rm Pb}$ взаимодействиях по сравнению с pp, см. [2; 5]. Факторы $R_{p{\rm Pb}}$ для высоких значений $p_{\rm T}$ представлены на Рисунке 6. Для центрального интервала (0-10%) при низких значениях $p_{\rm T}$ наблюдается рост значений $R_{p{\rm Pb}}$, периферический интервал (60-90%) показывает снижение значений. Для высоких значений $p_{\rm T}$ ($p_{\rm T}>10\,{\rm Fp}$) в пределах ошибок измерений значения $R_{p{\rm Pb}}$ сохраняют постоянные значения для всех интервалов центральности. В работе также получены результаты измерений факторов ядерной модификации для высоких $p_{\rm T}$ в интервале центральности 0–90%, которые подтверждают результаты коллаборации ALICE [14; 20]. Это свидетельствует о слабом влиянии эффектов начального состояния на свойства рождающихся частиц, либо об их взаимной компенсации.

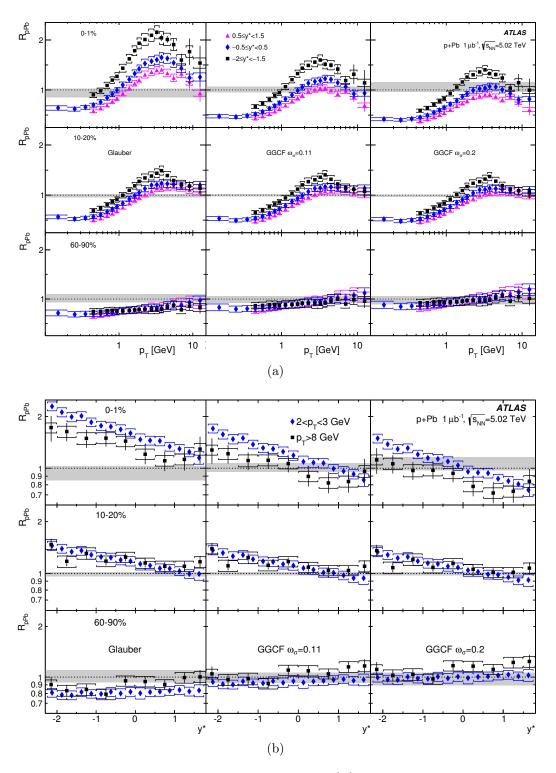


Рис. 4: Значения $R_{p\text{Pb}}$ представлены как: (а) p_{T} -зависимость для трёх интервалов быстроты; (b) y^* -зависимость для двух интервалов поперечного импульса. Для интервалов центральности 0-1% (верхние панели), 10-20% (средние панели) и 60–90% (нижние панели). Для модели Глаубера (слева) и модели ЦНГГ с $\omega_{\sigma}=0,11$ (средние) и $\omega_{\sigma}=0,2$ (справа).

В работе показано, что в p+Pb взаимодействиях не наблюдается подавления рождения заряженных частиц. Также показано, что расширение модели Глау-

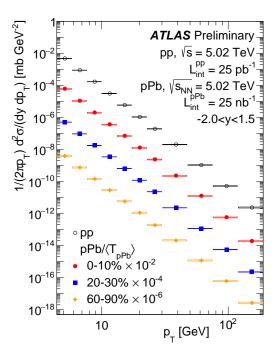


Рис. 5: $p_{\rm T}$ спектры заряженных частиц для трёх интервалов центральности и $-2 < y^* < 1, 5$.

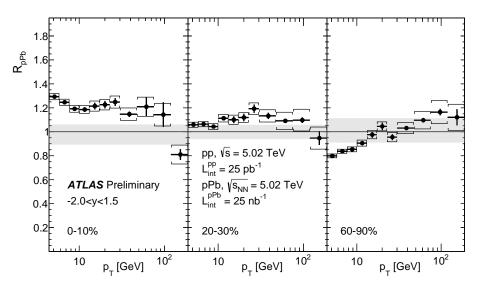


Рис. 6: $R_{p\text{Pb}}$ для интервалов центральности 0–10% (слева) 20–30% (посередине) и 60–90% (справа), для -2, 0 < y < 1, 5.

бера при помощи модели ЦНГГ позволяет получить значения $R_{p\text{Pb}}$ для высоких p_{T} в центральных взаимодействиях, удовлетворяющие пропорциональности числа заряженных частиц числу взаимодействующих нуклонов в пределах экспериментальных ошибок. Поэтому необходимы дальнейшие исследования взаимодействий p+Pb при помощи этой модели для определения точных параметров

и оценки возможности использования модели ЦНГГ для интерпретации результатов во всех асимметричных ультрарелятивистских взаимодействиях.

В заключении перечислены основные результаты и выводы:

- 1. Разработан и апробирован метод расчета коэффициентов коррекции и систематических погрешностей спектров заряженных частиц, полученных экспериментально.
- 2. Получены экспериментальные данные для инклюзивных спектров заряженных адронов как функция поперечного импульса, псевдобыстроты и быстроты в p+Pb взаимодействиях при высоких энергиях $\sqrt{s_{_{\rm NN}}}=5,02~{\rm T}$ эВ, для восьми различных интервалов центральности. Новые результаты расширяют область доступных измерений до 2,3 по псевдобыстроте и до $189~{\rm F}$ эВ по поперечному импульсу.
- 3. Получены экспериментальные данные о факторах ядерной модификации. Результаты свидетельствуют об увеличении выхода заряженных адронов при смещении в область отрицательных быстрот, в 1,5-2,5 раза для области поперечных импульсов $1 < p_{\rm T} < 10\,\Gamma$ эВ относительно выходов тех же частиц, измеренных в pp столкновениях. Как было показано другими экспериментами на БАК и при меньших энергиях, см. [20], при средних значениях $p_{\rm T}$ число протонов по отношению к числу пионов имеет сильную зависимсть от множественности. Поэтому, при помощи факторов ядерной модификации показано увеличение доли протонов, рождённых в p+Рb вза-имодействиях, в зависимости от быстроты. Новые данные о факторах ядерной модификации расширяют результаты для идентифицированных адронов до 2 по быстроте. В области поперечных импульсов $p_{\rm T} > 10\,\Gamma$ эВ факторы ядерной модификации в пределах ошибок измерений остаются постоянными для всех интервалов центральности.
- 4. Получены факторы ядерной модификации при помощи модели цветовой неустойчивости Глаубера—Грибова с $\omega_{\sigma}=0,11$ и $\omega_{\sigma}=0,2$. При сравнении результатов для модели Глаубера и Глаубера—Грибова обнаружено существенное различие значений факторов ядерной модификации. Это несоответствие свидетельствует о необходимости пересмотра и улучшения подходов, используемых для определения центральности в асимметричных системах.

Основное содержание диссертации было опубликовано в следующих работах:

- 1. Shulga E. Centrality dependence of charged particle production in proton-lead collisions measured by ATLAS // Nuclear Physics A. 2014. Vol. 926. Pp. 64–72.
- 2. Shulga E. Charged particle production in Pb-Pb and p-Pb collisions measured by the ATLAS detector // Journal of Physics: Conference Series. 2016. Vol. 668, no. 1. P. 012078.
- 3. Shulga E. Centrality dependence of low-pT and high-pT particle production in proton–lead collisions with ATLAS // Nuclear Physics A. 2016. Vol. 956. Pp. 565–568.
- 4. ATLAS Collaboration, G. Aad,..., E. Shulga Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in $\sqrt{s_{NN}} = 5.02 \text{ TeV } p + \text{Pb}$ collisions measured by the ATLAS experiment // Phys. Lett. B. 2016. Vol. 763. Pp. 313–336.
- 5. Shulga E. Charged particle production in p+Pb collisions measured by the ATLAS detector // Journal of Physics: Conference Series. 2017. Vol. 798, no. 1. P. 012066.

Другие источники:

- 6. Romatschke P., Romatschke U. Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC? // Phys. Rev. Lett. 2007. Oct. Vol. 99, issue 17. P. 172301.
- 7. Muller B., Nagle J. L. Results from the relativistic heavy ion collider // Ann. Rev. Nucl. Part. Sci. 2006. Vol. 56. Pp. 93–135.
- 8. Glauber modeling in high energy nuclear collisions / M. L. Miller [et al.] // Ann. Rev. Nucl. Part. Sci. 2007. Vol. 57. Pp. 205–243.
- 9. Alvioli M., Strikman M. Color fluctuation effects in proton-nucleus collisions // Phys. Lett. B. 2013. Vol. 722. Pp. 347–354.

- 10. Schukraft J., Stock R. Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN // Adv. Ser. Direct. High Energy Phys. 2015. Vol. 23. Pp. 61–87.
- 11. CMS Collaboration Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC // JHEP. 2010. Vol. 09. P. 091.
- 12. The Color Glass Condensate / F. Gelis [et al.] // Ann. Rev. Nucl. Part. Sci. 2010. Vol. 60. Pp. 463–489.
- 13. *McLerran L.*, *Praszalowicz M.* Fluctuations and the rapidity dependence of charged particles spectra in fixed centrality bins in pA collisions // Annals of Physics. 2016. Vol. 372. Pp. 215–225.
- 14. ALICE Collaboration. Transverse Momentum Distribution and Nuclear Modification Factor of Charged Particles in p-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV // Phys.Rev.Lett. 2013. Vol. 110. P. 082302.
- 15. CMS Collaboration Nuclear effects on the transverse momentum spectra of charged particles in p+Pb collisions at $\sqrt{s_{_{\rm NN}}}=5.02$ TeV // Eur. Phys. J. C. 2015. Vol. 75, no. 5. P. 237.
- 16. Guzey V., Strikman M. Proton-nucleus scattering and cross section fluctuations at RHIC and LHC // Phys. Lett. B. 2006. Vol. 633. Pp. 245–252.
- 17. Donnachie A., Landshoff P. V. Total cross-sections // Phys. Lett. 1992. Vol. B296. Pp. 227–232.
- 18. TOTEM Collaboration Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at $\sqrt{s}=8\,$ TeV // Phys. Rev. Lett. 2013. July. Vol. 111, issue 1. P. 012001.
- 19. ATLAS Collaboration Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton-lead collisions at $\sqrt{s_{_{\rm NN}}}=5.02$ TeV with the ATLAS detector // Eur. Phys. J. C. 2016. Vol. 76, no. 4. P. 199.
- 20. ALICE Collaboration. Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02 \; \mathrm{TeV} \; // \; \mathrm{Phys.} \; \mathrm{Lett.} \; \mathrm{B.} \; -2016. \; -\mathrm{Vol.} \; 760. \; -\mathrm{Pp.} \; 720-735.$