Эффективное ускорение электронов в режиме релятивистского самозахвата лазерного света

Брантов А. В., Быченков В. Ю., Лобок М. Г.

- V. F. Kovalev and V. Yu. Bychenkov, Analytic theory of relativistic selffocusing for a Gaussian light beam entering a plasma: Renormalizationgroup approach. Phys. Rev. E. Vol. 99, P. 043201 (2019)
- V. Yu. Bychenkov, M. Lobok, V. F Kovalev and A. V. Brantov, Generation of high-charge electron beam in a subcritical-density plasma through laser pulse self-trapping, Plasma Phys. Control. Fusion.Vol. 61, P.124004 (2019)
- M. G. Lobok, A. V. Brantov, D. A. Gozhev and V. Yu.Bychenkov, Optimization of electron acceleration by short laser pulses from low-density targets, Plasma Phys. Control. Fusion.Vol. 60, P. 084010 (2018)
- M. G. Lobok, A. V. Brantov and V. Yu.Bychenkov, Effective production of gammas, positrons, and photonuclear particles from optimized electron acceleration by short laser pulses in low-density targets. Phys. Plasmas. Vol. 26, P. 123107 (2019)

На премию им. Н. Г. Басова 2020 год

Кильватерное ускорение электронов

Основные принципы кильватерного ускорения Tajima T. and Dawson J. M. 1979 Phys. Rev. Lett. **43** 267

Нелинейный трехмерный режим Pukhov A. and Meyer-ter-Vehn J., 2002 Appl. Phys. B: Lasers Opt. **74** 355

0.004n_c

 $L < \lambda_p \quad L < d$

В настоящее время получают квазимоноэнергетичные пучки электронов с энергией до 3 ГэВ (газ) и 7.8 ГэВ (капилляр) но зарядом до ~ 10 пКл

Моделирование ускорения электронов для источника вторичного ЭМИ

 $\Delta x \times \Delta y \times \Delta z = \lambda/50 \times \lambda/10 \times \lambda/10$

Оптимизация ускорения электронов

Зависимость заряда ускоренных электронов (> 30 МэВ) от параметров мишени

Существует оптимальная плотность мишени, которая зависит от интенсивности лазера и пятна фокусировки и приводит к максимальному заряду ускоренных ультрарелятивистских (с энергией > 30 МэВ) электронов

Распространение лазерного импульса

Физика условия релятивистского самозахвата

$$R \simeq lpha rac{c}{\omega_p} \sqrt{a_0}$$
 $lpha = 2^{0.75}$
 $R = rac{c}{\omega} \sqrt{rac{n_c}{n_e}} \left(rac{16 lpha^4 P}{P_c}
ight)^{1/6}$ Р – мощн

Р – мощность лазера

Дифракционная расходимость полностью компенсируется релятивистской нелинейностью!

Дифракционная $\theta_d \simeq \lambda / \pi R$ расходимость пучка $\theta_i = \pi/2 - \theta_d$ Угол падения Условия $n_1 \sin \theta_i = n_2 \sin \theta_r$ прохождения Условие полного $\theta_r = \pi/2$ отражения $\sin \theta_i$ n_2 $\theta_d^2 \simeq \left(\frac{2c}{\omega R}\right)^2 \simeq \frac{\omega_p^2}{\omega_p^2} \simeq \frac{\sqrt{2}\omega_p^2}{\sigma_p^2}$ $\gamma = \sqrt{1 + a_0^2/2} \simeq a_0/\sqrt{2}$ $\mathsf{R} \cong \frac{c}{\omega_n} \, 2^{3/4} \, \sqrt{a_0}$

Режим самозахвата в нелинейно-оптической трактовке (теория)

$$2ik\partial_{z}E + \Delta_{\perp}E + k^{2}\frac{\epsilon_{nl}}{\epsilon_{0}}E = 0$$

$$k = (\omega/c)\sqrt{\epsilon_{0}}$$
Kovalev V F and Bychenkov V Yu 2019 Phys. Rev. E **99** 043201

нелинейность из-за изменения плотности

релятивистская нелинейность

Условие самозахвата импульса

$$L(\rho, a_0) = 0 \qquad \rho \equiv \omega_{pe} R_L/c$$

$$L(\rho, a_0) = (\rho^2 a_0^2/2) \left(1 + a_0^2\right)^{-3/2} - 1$$

$$\rho$$
15
$$R_L/\lambda = 3.5$$

$$n/n_c = 0.1$$
10
$$a_0 = 24$$
(p2)

 $\begin{array}{c}
 a_0 = 72 \\
 a_0 = 72 \\
 n/n_c = 0.3 \\
 20 \quad 40 \quad 60 \quad 80 \quad 100 \quad a_0
\end{array}$

Численная проверка условий согласования

Особенности ускорения электронов

Зависимость заряда пучка электронов от мощности лазерного импульса

электронов (с энергией> 30 МэВ) ~15 %

Генерация гамма-излучения. Оптимальная толщина конвертера.

Длина излучения 100 МэВ-ного электрона в платине ~ 3 мм

Энергия фотонов ~ 0.35 Дж, что дает коэффициент конверсии лазер-гамма на уровне 9% !

Спектр гамма-излучения

Конвертер - Pt с толщиной 5 мм

Производство позитронов

Получение нейтронов

Заключение

- Впервые удалось объяснить эмпирически подтверждаемое на протяжении нескольких лет условие согласования параметров лазера с плотностью плазмы, позволяющее достигать наилучшей эффективности лазерного ускорения электронов в прозрачной плазме.
- Доказано, что это условие отвечает режиму релятивистского самозахвата лазерного импульса, т.е. формированию нелинейной лазерно-плазменной структуры типа пространственного солитона – «лазерной пули», при котором импульс устойчиво распространяется в плазме и устойчиво ускоряет электроны, обеспечивая рекордный полный заряд.
- Показана перспективность использования лазерно-ускоренных электронов для генерации гамма-излучения, производства позитронов и нейтронов.